Accessibility navigation


Floodplain environmental change during the Younger Dryas and Holocene in Northwest Europe: Insights from the lower Kennet Valley, south central England

Collins, P. E. F., Worsley, P., Keith-Lucas, D. M. and Fenwick, I. M. (2006) Floodplain environmental change during the Younger Dryas and Holocene in Northwest Europe: Insights from the lower Kennet Valley, south central England. Palaeogeography Palaeoclimatology Palaeoecology, 233 (1-2). pp. 113-133. ISSN 0031-0182

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.palaeo.2005.09.014

Abstract/Summary

Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal BP. Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology. (c) 2005 Elsevier B.V. All rights reserved.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:3413
Uncontrolled Keywords:stadial interglacial palaeoecology peat tufa flooding ABRUPT CLIMATE-CHANGE PROXY-CLIMATE VEGETATIONAL HISTORY RIVER DEVELOPMENT RECORD BERKSHIRE EVOLUTION UK GERMANY BRITAIN
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation