Accessibility navigation


A preliminary investigation into the use of ochre as a remedial amendment in arsenic-contaminated soils

Doi, M., Warren, G. and Hodson, M. E. (2005) A preliminary investigation into the use of ochre as a remedial amendment in arsenic-contaminated soils. Applied Geochemistry, 20 (12). pp. 2207-2216. ISSN 0883-2927

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.apgeochem.2005.08.006

Abstract/Summary

Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg(-1)) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 mu g kg(-1) in the control and 1-2.5 mu g kg(-1) in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05-1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as Solution concentration was reduced to ca. 1 mu gkg(-1) by 0.2-1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 mu g kg(-1) in the 1:1 ochre:soil inix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K= 1.64, n = 0.79, R-2 = 0.76, p <= 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area. (c) 2005 Elsevier Ltd. All rights reserved.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Faculty of Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:3478
Uncontrolled Keywords:IRON-OXIDES CLAY-MINERALS ADSORPTION GOETHITE SORPTION IMMOBILIZATION STABILITY KINETICS OXYHYDROXIDES SOLUBILITY
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation