[1] S. Qureshi, “Adaptive equalization,” Proceedings of the IEEE, vol. 73,
no. 9, pp. 1349–1387, Sept. 1985.
[2] G. D. Forney Jr, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,” IEEE Transactions
on Information Theory, vol. 18, no. 3, pp. 363–378, May 1972.
[3] D. Williamson, R. A. Kennedy, and G. W. Pulford, “Block decision
feedback equalization,” IEEE Transactions on Communications, vol. 40,
no. 2, pp. 255–264, Feb. 1992.
[4] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive Bayesian equalizer
with decision feedback,” IEEE Transactions on Signal Processing,
vol. 41, no. 9, pp. 2918–2927, Sept. 1993.
[5] S. Siu, G. J. Gibson, and C. F. N. Cowan, “Decision feedback equalisation
using neural network structures and performance comparison with
standard architecture,” IEE Proceedings I - Communications, Speech and
Vision, vol. 137, no. 4, pp. 221–225, Aug. 1990.
[6] S. Chen, G. J. Gibson, and C. F. N. Cowan, “Adaptive channel equalisation
using a polynomial-perceptron structure,” IEE Proceedings I -
Communications, Speech and Vision, vol. 137, no. 5, pp. 257–264, Oct.
1990.
[7] G. J. Gibson, S. Siu, and C. F. N. Cowan, “The application of nonlinear
structures to the reconstruction of binary signals,” IEEE Transactions
on Signal Processing, vol. 39, no. 8, pp. 1877–1884, Aug. 1991.
[8] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Reconstruction
of binary signals using an adaptive radial-basis-function equalizer,”
Signal Processing, vol. 22, no. 1, pp. 77–93, Jan. 1991.
[9] I. Cha and S. Kassam, “Channel equalization using adaptive complex
radial basis function networks,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 1, pp. 122–131, Jan. 1995.
[10] S. Haykin, Adaptive Filter Theory (2nd Edition). Englewood, NJ:
Prentice Hall, 1991.
[11] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in 1960 IRE
WESCON Convention Record, 1960, Part 4, pp. 96–104.
[12] E. Shamash and K. Yao, “On the structure and performance of a linear
decision feedback equalizer based on the minimum error probability
criterion,” in Proceedings of 1974 IEEE International Conference on
Communications (Minneapolis, USA), June 17-19, 1974, pp. 25F1–
25F5.
[13] S. Chen, E. S. Chng, B. Mulgrew, and G. J. Gibson, “Minimum-
BER linear-combiner DFE,” in Proceedings of 1996 IEEE International
Conference on Communications, (Dallas, TX), June 23-27, 1996, vol. 2,
pp. 1173–1177.
[14] C.-C. Yeh, R. R. Lopes, and J. R. Barry, “Approximate minimum biterror
rate multiuser detection,” in Proceedings of 1998 IEEE Global
Telecommunications Conference (Sydney, NSW ), Nov. 8-12, 1998,
vol. 6, pp. 3590–3595.
[15] S. Chen, B. Mulgrew, E. S. Chng, and G. J. Gibson, “Space translation
properties and the minimum-BER linear-combiner DFE,” IEE Proceedings
- Communications, vol. 145, no. 5, pp. 316–322, Oct. 1998.
[16] S. Chen and B. Mulgrew, “Minimum-SER linear-combiner decision
feedback equaliser,” IEE Proceedings - Communications, vol. 146, no. 6,
pp. 347–353, Dec. 1999.
[17] I. N. Psaromiligkos, S. N. Batalama and D. A. Pados, “On adaptive
minimum probability of error linear filter receivers for DS-CDMA
channels,” IEEE Transactions on Communications, vol. 47, no. 7,
pp. 1092–1102, July 1999.
[18] S. Chen, S. Gunn, and C. J. Harris, “Decision feedback equaliser design
using support vector machines,” IEE Proceedings - Vision, Image and
Signal Processing, vol. 147, no. 3, pp. 213–219, June 2000.
[19] X. F. Wang, W.-S. Lu, and A. Antoniou, “Constrained minimum-BER
multiuser detection,” IEEE Transactions on Signal Processing, vol. 48,
no. 10, pp. 2903–2909, Oct. 2000.
[20] C.-C. Yeh and J. R. Barry, “Adaptive minimum bit-error rate equalization
for binary signaling,” IEEE Transactions on Communications, vol. 48,
no. 7, pp. 1226–1235, July 2000.
[21] B. Mulgrew and S. Chen, “Stochastic gradient minimum-BER decision
feedback equalisers,” in Proceedings of 2000 IEEE Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Lake
Louise, Canada), Oct. 1-4, 2000, pp. 93–98.
[22] K. A. Phillips, J. H. Reed, and W. H. Tranter, “Minimum BER adaptive
filtering,” in Proceedings of 2000 IEEE International Conference
on Communications (New Orleans, LA), June 18-22, 2000, Vol. 3,
pp. 1675–1680.
[23] B. Mulgrew and S. Chen, “Adaptive minimum-BER decision feedback
equalisers for binary signalling,” Signal Processing, vol. 81, no. 7,
pp. 1479–1489, July 2001.
[24] S. Chen, L. Hanzo, and N. N. Ahmad, “Adaptive minimum bit error
rate beamforming assisted receiver for wireless communications,” in
Proceedings of 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing (Hong Kong, China), April 6-10, 2003,
vol. IV, pp. 640–643.
[25] M. Y. Alias, A. K. Samingan, S. Chen, and L. Hanzo, “Multiple antenna
aided OFDM employing minimum bit error rate multiuser detection,”
Electronics Letters, vol. 39, no. 24, pp. 1769–1770, 2003.
[26] S. J. Yi, C. C. Tsimenidis, O. R. Hinton, and B. S. Sharif, “Adaptive
minimum bit error rate multiuser detection for asynchronous MCCDMA
systems frequency selective Rayleigh fading channels,” in Proceedings
of 14th IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (Beijing, China ), Sept.7-10, 2003,
vol. 2, pp. 1269–1273.
[27] R. C. de Lamare and R. Sampaio-Neto, “Adaptive MBER decision
feedback multiuser receivers in frequency selective fading channels,”
IEEE Communications Letters, vol. 7, no. 2, pp. 73–75, Feb. 2003.
[28] D. Gesber, “Robust linear MIMO receivers: a minimum error-rate
approach,” IEEE Transactions on Signal Processing, vol. 51, no. 11,
pp. 2863–2871, Nov. 2003.
[29] F.-J. Chen, S.-K. Xiong, and G. Wei, “A new constrained minimum-BER
multiuser detection algorithm,” in Proceedings of IEEE 6th Circuits and
Systems Symposium on Emerging Technologies: Frontiers of Mobile and
Wireless Communication (Shanghai, China), 1 May-2 June, 2004, vol. 3,
pp. 365–368.1.
[30] S. Chen, N. N. Ahmad, and L. Hanzo, “Adaptive minimum bit error rate
beamforming,” IEEE Transactions on Wireless Communications, vol. 4,
no. 2, pp. 341–348, March 2005.
[31] S. Chen, A. Livingstone, and L. Hanzo, “Minimum bite-error rate
design for space-time equalization-based multiuser detection,” IEEE
Transaction on Communications, vol. 54, no. 5, pp. 824–832, May 2006.
[32] J. Riani, S. van Beneden, J. W. M. Bergmans, and A. Immink, “Nearminimum
bit-error rate equalizer adaptation for PRML systems,” IEEE
Transactions on Communications, vol. 55, no. 12, pp. 2316–2327, Dec.
2007
[33] S. Chen, B. Mulgrew, and L. Hanzo, “Least bit error rate adaptive
nonlinear equalisers for binary signalling,” IEE Proceedings - Communications,
vol. 150, no. 1, pp. 29–36, Feb. 2003.
[34] S. Chen, “Adaptive minimum bit-error-rate filtering,” IEE Proceedings
- Vision, Image and Signal Processing, vol. 151, no. 1, pp. 76–85, Feb.
2004.
[35] L. Kovacs, J. Levendovszky, A. Olah, and G. Treplan, “Approximate
minimum bit error rate equalization for fading channels,” EURASIP
Journal on Advances in Signal Processing, vol. 2010, Article No. 7,
9 pages, Feb. 2010.
[36] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models,”
International Computer Science Institute, vol. 4, no. 510, 281 pages,
1998.
[37] G. McLachlan and D. Peel, Finite Mixture Models. John Wiley & Sons,
Inc., 2004.
[38] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel density construction
using orthogonal forward regression with leave-one-out test score and
local regularization,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 34, no. 4, pp. 1708–1717, Aug. 2004.
[39] X. Hong, S. Chen, and C. J. Harris, “A forward-constrained regression
algorithm for sparse kernel density estimation,” IEEE Transactions on
Neural Networks, vol. 19, no. 1, pp. 193–198, Jan. 2008.
[40] S. Chen, X. Hong, and C. J. Harris, “An orthogonal forward regression
technique for sparse kernel density estimation,” Neurocomputing,
vol. 71, nos. 4-6, pp. 931–943, Jan. 2008.
[41] S. Chen, X. Hong, and C. J. Harris, “Regression based D-optimality
experimental design for sparse kernel density estimation,” Neurocomputing,
vol. 73, nos. 4-6, pp. 727–739, Jan. 2010.
[42] S. Chen, S. McLaughlin, B. Mulgrew, and P. M. Grant, “Bayesian
decision feedback equaliser for overcoming co-channel interference,”
IEE Proceedings - Communications, vol. 143, no. 4, pp. 219–225, Aug.
1996.
[43] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for
digital communications channel equalization using radial basis function
networks,” IEEE Transactions on Neural Networks, vol. 4, no. 4,
pp. 570–590, July 1993.
[44] S. Chen, X. Hong, B. L. Luk, and C. J. Harris, “Construction of tunable
radial basis function networks using orthogonal forward selection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 39, no. 2, pp. 457–466, April 2009.
[45] S. Chen, X. Hong and C. J. Harris, “Particle swarm optimization
aided orthogonal forward regression for unified data modelling,” IEEE
Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 477–499,
Aug. 2010.