Accessibility navigation


Detection of recent changes in climate using meteorological data from south-eastern Bangladesh

Raihan, F., Li, G. and Harrison, S. P. (2015) Detection of recent changes in climate using meteorological data from south-eastern Bangladesh. Journal of Climatology & Weather Forecasting, 3 (1). 137. ISSN 2332-2594

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.4172/2332-2594.1000127

Abstract/Summary

Analysis of meteorological records from four stations (Chittagong, Cox’s Bazar, Rangamati, Sitakunda) in south-eastern Bangladesh show coherent changes in climate over the past three decades. Mean maximum daily temperatures have increased between 1980 and 2013 by ca. 0.4 to 0.6°C per decade, with changes of comparable magnitude in individual seasons. The increase in mean maximum daily temperature is associated with decreased cloud cover and wind speed, particularly in the pre- and post-monsoon seasons. During these two seasons, the correlation between changes in maximum temperature and clouds is between -0.5 and -0.7; the correlation with wind speed is weaker although similar values are obtained in some seasons. Changes in mean daily minimum (and hence mean) temperature differ between the northern and southern part of the basin: northern stations show a decrease in mean daily minimum temperature during the post-monsoon season of between 0.2 and 0.5°C per decade while southern stations show an increase of ca. 0.1 to 0.4°C per decade during the pre-monsoon and monsoon seasons. In contrast to the significant changes in temperature, there is no trend in mean or total precipitation at any station. However, there is a significant increase in the number of rain days at the northern sites during the monsoon season, with an increase per decade of 3 days in Sitakunda and 7 days at Rangamati. These climate changes could have a significant impact on the hydrology of the Halda Basin, which supplies water to Chittagong and is the major pisciculture centre in Bangladesh.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40068
Publisher:OMICS

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation