Accessibility navigation


Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

Vogel, N., Scheidegger, Y., Brennwald, M. S., Fleitmann, D., Figura, S., Wieler, R. and Kipfer, R. (2013) Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas. Climate of the Past, 9 (1). pp. 1-12. ISSN 1814-9324

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

9MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/cp-9-1-2013

Abstract/Summary

In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Scientific Archaeology
Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Archaeology
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40306
Publisher:Copernicus Publications on behalf of the European Geosciences Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation