Accessibility navigation


Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas

Fernández-Romero, M. L., Parras-Alcántara, L., Lozano-García, B., Clark, J. M. and Collins, C. D. (2016) Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena, 137. pp. 449-458. ISSN 0341-8162

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.catena.2015.10.019

Abstract/Summary

In Mediterranean areas, conventional tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. CO2 sequestration rates in soil may be enhanced by appropriate agricultural soil management and increasing soil organic matter content. This study analyzes the stratification ratio (SR) index of soil organic carbon (SOC), nitrogen (N) and C:N ratio under different management practices in an olive grove (OG) in Mediterranean areas (Andalusia, southern Spain). Management practices considered in this study are conventional tillage (CT) and no tillage (NT). In the first case, CT treatments included addition of alperujo (A) and olive leaves (L). A control plot with no addition of olive mill waste was considered (CP). In the second case, NT treatments included addition of chipped pruned branches (NT1) and chipped pruned branches and weeds (NT2). The SRs of SOC increased with depth for all treatments. The SR of SOC was always higher in NT compared to CT treatments, with the highest SR of SOC observed under NT2. The SR of N increased with depth in all cases, ranging between 0.89 (L-SR1) and 39.11 (L-SR3 and L-SR4).The SR of C:N ratio was characterized by low values, ranging from 0.08 (L-SR3) to 1.58 (NT1-SR2) and generally showing higher values in SR1 and SR2 compared to those obtained in SR3 and SR4. This study has evaluated several limitations to the SR index such as the fact that it is descriptive but does not analyze the behavior of the variable over time. In addition, basing the assessment of soil quality on a single variable could lead to an oversimplification of the assessment. Some of these limitations were experienced in the assessment of L, where SR1 of SOC was the lowest of the studied soils. In this case, the higher content in the second depth interval compared to the first was caused by the intrinsic characteristics of this soil's formation process rather than by degradation. Despite the limitations obtained SRs demonstrate that NT with the addition of organic material improves soil quality.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Centre for Food Security
Interdisciplinary centres and themes > Soil Research Centre
ID Code:45734
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation