Accessibility navigation


Activation of the mitogen-activated protein kinase cascade by pertussis toxin-sensitive and -insensitive pathways in cultured ventricular cardiomyocytes.

Bogoyevitch, M. A., Clerk, A. and Sugden, P. H. (1995) Activation of the mitogen-activated protein kinase cascade by pertussis toxin-sensitive and -insensitive pathways in cultured ventricular cardiomyocytes. The Biochemical journal, 309 ( Pt 2. pp. 437-43. ISSN 0264-6021

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

The involvement of pertussis toxin (PTX)-sensitive and -insensitive pathways in the activation of the mitogen-activated protein kinase (MAPK) cascade was examined in ventricular cardiomyocytes cultured from neonatal rats. A number of agonists that activate heterotrimeric G-protein-coupled receptors stimulated MAPK activity after exposure for 5 min. These included foetal calf serum (FCS), endothelin-1 (these two being the most effective of the agonists examined), phenylephrine, endothelin-3, lysophosphatidic acid, carbachol, isoprenaline and angiotensin II. Activation of MAPK and MAPK kinase (MEK) by carbachol returned to control levels within 30-60 min, whereas activation by FCS was more sustained. FPLC on Mono Q showed that carbachol and FCS activated two peaks of MEK and two peaks of MAPK (p42MAPK and p44MAPK). Pretreatment of cells with PTX for 24 h inhibited the activation of MAPK by carbachol, FCS and lysophosphatidic acid, but not that by endothelin-1, phenylephrine or isoprenaline. Involvement of G-proteins in the activation of the cardiac MAPK cascade was demonstrated by the sustained (PTX-insensitive) activation of MAPK (and MEK) after exposure of cells to AlF4-. AlF4- activated PtdIns hydrolysis, as did endothelin-1, endothelin-3, phenylephrine and FCS. In contrast, the effect of lysophosphatidic acid on PtdIns hydrolysis was small and carbachol was without significant effect even after prolonged exposure. We conclude that PTX-sensitive (i.e. Gi/G(o)-linked) and PTX-insensitive (i.e. Gq/Gs-linked) pathways of MAPK activation exist in neonatal ventricular myocytes. FCS may stimulate the MAPK cascade through both pathways.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:50526

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation