[1] E. Cant-Paz, A summary of research on parallel
genetic algorithms, Technical Report 950076, Illinois
Genetic Algorithm Lab., Univ. Illinois Urbana-
Champaign, Urbana, IL, July 1995.
[2] G. Di Fatta, G. Lo Re, Efficient tree construction for
the multicast problem, Special issue of the Journal of the
Brazilian Telecommunications Society, 1999.
[3] G. Di Fatta, G. Lo Presti, G. Lo Re, Computer
Network Topologies: Models and Generation Tools,
CE.R.E. Technical Report 5, July 2001.
[4] K. A. Dowsland, Hill-climbing, Simulated Annealing
and the Steiner Problem in Graphs, Engineering
Optimisation, 17, 1991, pp. 91-107.
[5] H. Esbensen, Computing Near-Optimal Solutions to
the Steiner Problem in a Graph Using a Genetic
Algorithm, Networks: An International Journal, 26, 1995.
[6] M. Faloutsos, P. Faloutsos, C. Faloutsos, On Power-
Law Relationships of the Internet Topology, ACM
SIGCOMM, 1999.
[7] M. Gendreau, J. F. Larochelle, B. Sanso, A Tabu
Search Heuristic for the Steiner Tree Problem, Networks,
34, 1999, 162-172.
[8] D. E. Goldberg, Genetic algorithm in Search,
Optimization, and Machine Learning (Reading, MA:
Addison Wesley, 1989).
[9] R. Govindan, H. Tangmunarunkit, Heuristics for
Internet Map Discovery, Proc IEEE Infocom 2000, Tel
Aviv, Israel.
[10] R. M. Karp, Reducibility among Combinatorial
Problems, in R. E. Miller, J. W. Thatcher (Eds.),
Complexity of Computer Computations (Plenum Press,
New York, 1972, 85-103).
[11] L. Kou, G. Markowsky, L. Berman, A fast algorithm
for Steiner trees, Acta Inform., 15, 1981, 141-145.
[12] J. Kruskal, On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem, Proc. Amer.
Math. Soc., 7, 1956, 48-50.
[13] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE
Universal Topology Generator, 2001, cs-pub.bu.edu/brite.
[14] A. Medina, I. Matta, J. Byers, On the Origin of
Power Laws in Internet Topologies, ACM SIGCOMM
2000, 30(2), April 2000.
[15] Message Passing Interface Forum. MPI: A new
message-passing interface standard (version 1.1),
Technical Report, University of Tennessee, 1995.
[16] V. J. Rayward-Smith, The computation of nearly
minimal Steiner trees in graphs, Int. Math. Ed. Sci. Tech.
14, 1983, 15-23.
[17] V. J. Rayward-Smith, A. Clare, On Finding Steiner
Vertices, Networks, 16, 1986, 283-294.
[18] H. Tangmunarunkit, R. Govindan, S. Jamin, et al.,
Network Topologies, Power Laws, and Hierarchy,
SIGCOMM 2001, June 2001.
[19] H. Takahashi, A Matsuyama, An approximate
solution for the Steiner problem in graphs, Math. Japan,
1980, 573-577.
[20] M. Tomassini, Parallel and distributed evolutionary
algorithms: A review, in K. Miettinen, M. Mkel, P.
Neittaanmki, J. Periaux, Evolutionary Algorithms in
Engineering and Computer Science (Eds. New York:
Wiley, 1999, 113-133).
[21] S. Voss, A. Martin, T. Koch, SteinLib Testdata
Library, February 2001, elib.zib.de/steinlib/steinlib.php.
[22] P. Winter, Steiner problem in networks: a survey,
Networks, 17, 1987, 129-167.