Accessibility navigation


Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing

Daly, I., Williams, D., Malik, A., Weaver, J., Kirke, A., Hwang, F., Miranda, E. and Nasuto, S. J. (2020) Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing. IEEE Transactions on Affective Computing, 11 (1). pp. 111-124. ISSN 1949-3045

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/TAFFC.2018.2801811

Abstract/Summary

Brain-computer music interfaces (BCMIs) may be used to modulate affective states, with applications in music therapy, composition, and entertainment. However, for such systems to work they need to be able to reliably detect their user's current affective state. We present a method for personalised affective state detection for use in BCMI. We compare it to a population-based detection method trained on 17 users and demonstrate that personalised affective state detection is significantly ( $p<0.01$p<0.01 ) more accurate, with average improvements in accuracy of 10.2 percent for valence and 9.3 percent for arousal. We also compare a hybrid BCMI (a BCMI that combines physiological signals with neurological signals) to a conventional BCMI design (one based upon the use of only EEG features) and demonstrate that the hybrid design results in a significant ( $p<0.01$p<0.01 ) 6.2 percent improvement in performance for arousal classification and a significant ( $p<0.01$p<0.01 ) 5.9 percent improvement for valence classification.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Department of Bio-Engineering
ID Code:76558
Publisher:IEEE

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation