Accessibility navigation


A second tephra isochron for the Younger Dryas period in northern Europe: the Abernethy Tephra

MacLeod, A., Matthews, I. P., Lowe, J. J., Palmer, A. P. and Albert, P. G. (2015) A second tephra isochron for the Younger Dryas period in northern Europe: the Abernethy Tephra. Quaternary Geochronology, 28. pp. 1-11. ISSN 1871-1014

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.quageo.2015.03.010

Abstract/Summary

Visible and non-visible (cryptotephra) volcanic ash layers are increasingly being used to underpin the chronology and high-precision correlation of sequences dating to the last glacial–interglacial transition (LGIT). As the number of sediment records analysed for tephra content rises, and methodological developments permit the detection, extraction and chemical analysis of increasingly scantily represented glass shard concentrations, greater complexity in shard count profiles is revealed. Here we present new evidence from sites in Scotland, and review published evidence from sites elsewhere in NW Europe, that indicate complexity in the eruptive history of Katla volcano during the mid-Younger Dryas and Early Holocene. We propose evidence for a previously-overlooked tephra isochron, here named the Abernethy Tephra, which is consistently found to lie close to the Younger Dryas/Holocene transition. It has a major-element chemical composition indistinguishable from that of the Vedde Ash, which was erupted from the Katla volcano at 12,121 ± 114 cal a BP. The new data suggest that Katla may have erupted again between 11,720–11,230 cal a BP and the subsequent ash fall increases the potential to assess environmental response to Holocene warming across north and west Europe.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:77200
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation