Accessibility navigation


Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops

Challinor, A. J. and Wheeler, T. R. (2008) Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agricultural and Forest Meteorology, 148 (6-7). pp. 1062-1077. ISSN 0168-1923

Full text not archived in this repository.

To link to this article DOI: 10.1016/j.agrformet.2008.02.006

Abstract/Summary

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Agriculture, Policy and Development
ID Code:8384
Uncontrolled Keywords:crop model, climate change, carbon dioxide, water stress, spatial scale, ATMOSPHERIC CARBON-DIOXIDE, ARACHIS-HYPOGAEA L, OPEN-AIR CONDITIONS, CLIMATE-CHANGE, ELEVATED CO2, SENSITIVITY-ANALYSIS, SUMMER MONSOON, GAS-EXCHANGE, YIELD, SIMULATION

Centaur Editors: Update this record

Page navigation