Accessibility navigation


Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids

Lodwig, E. M., Leonard, M., Marroqui, S., Wheeler, T. R., Findlay, K., Downie, J. A. and Poole, P. S. (2005) Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Molecular Plant-Microbe Interactions, 18 (1). pp. 67-74. ISSN 0894-0282

Full text not archived in this repository.

To link to this article DOI: 10.1094/mpmi-18-0067

Abstract/Summary

Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Agriculture, Policy and Development
ID Code:8845
Uncontrolled Keywords:POLY-BETA-HYDROXYBUTYRATE, GRAM-NEGATIVE BACTERIA, FLOW-CHAMBER, REACTIONS, SOYBEAN ROOT-NODULES, RHIZOBIUM SINORHIZOBIUM MELILOTI, SYMBIOTIC NITROGEN-FIXATION, ASPARTATE-AMINOTRANSFERASE, INSERTIONAL, MUTAGENESIS, ALFALFA NODULES, ACID-TRANSPORT

Centaur Editors: Update this record

Page navigation