Accessibility navigation


A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene

Gardiner, L.-J., Bansept-Basler, P., El-Soda, M., Hall, A. and O'Sullivan, D. M. (2020) A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene. PLoS ONE, 15 (4). e0231157. ISSN 1932-6203

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB
[img] Text - Accepted Version
· Restricted to Repository staff only

754kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1371/journal.pone.0231157

Abstract/Summary

We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Agriculture, Policy and Development > Biodiversity, Crops and Agroecosystems Division > Crops Research Group
ID Code:88552
Publisher:Public Library of Science

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation