Accessibility navigation


Bioelectrical understanding and engineering of cell biology

Schofield, Z., Meloni, G. N., Tran, P., Zerfass, C., Sena, G., Hayashi, Y., Grant, M., Contera, S. A., Minteer, S. D., Kim, M., Prindle, A., Rocha, P., Djamgoz, M. B. A., Pilizota, T., Unwin, P. R., Asally, M. and Soyer, O. S. (2020) Bioelectrical understanding and engineering of cell biology. Journal of the Royal Society Interface, 17 (166). 20200013. ISSN 1742-5662

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1098/rsif.2020.0013

Abstract/Summary

The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo, the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Department of Bio-Engineering
ID Code:90915
Publisher:Royal Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation