Accessibility navigation


Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

Heckmann, L. H., Sibly, R. M., Connon, R., Hooper, H. L., Hutchinson, T. H., Maund, S. J., Hill, C. J., Bouetard, A. and Callaghan, A. (2008) Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9 (2). p. 14. ISSN 1474-760X

Full text not archived in this repository.

To link to this article DOI: 10.1186/gb-2008-9-2-r40

Abstract/Summary

Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion: Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences
ID Code:9805
Uncontrolled Keywords:JUVENILE-HORMONE, ARACHIDONIC-ACID, PROSTAGLANDIN E(2), SIGNALING, PATHWAY, NUCLEAR RECEPTORS, GENE, CRUSTACEAN, EXPRESSION, TOXICITY, ECOTOXICOGENOMICS

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation