Accessibility navigation


Measuring soil colour to estimate soil organic carbon using a large-scale citizen science-based approach

Ferrando Jorge, N., Clark, J. ORCID: https://orcid.org/0000-0002-0412-8824, Cardenas, M. L., Geoghegan, H. ORCID: https://orcid.org/0000-0003-1401-8626 and Shannon, V. (2021) Measuring soil colour to estimate soil organic carbon using a large-scale citizen science-based approach. Sustainability, 13 (19). 11029. ISSN 2071-1050

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

9MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3390/su131911029

Abstract/Summary

Rapid, low-cost methods for large-scale assessments of soil organic carbon (SOC) are essential for climate change mitigation. Our work explores the potential for citizen scientists to gather soil colour data as a cost-effective proxy of SOC instead of conventional lab analyses. The research took place during a 2-year period using topsoil data gathered by citizen scientists and scientists from urban parks in the UK and France. We evaluated the accuracy and consistency of colour identification by comparing “observed” Munsell soil colour estimates to “measured” colour derived from reflectance spectroscopy, and calibrated colour observations to ensure data robustness. Statistical relationships between carbon content obtained by loss on ignition (LOI) and (i) observed and (ii) measured soil colour were derived for SOC prediction using three colour components: hue, lightness, and chroma. Results demonstrate that although the spectrophotometer offers higher precision, there was a correlation between observed and measured colour for both scientists (R2 = 0.42; R2 = 0.26) and citizen scientists (R2 = 0.39; R2 = 0.19) for lightness and chroma, respectively. Foremost, a slightly stronger relationship was found for predicted SOC using the spectrophotometer (R2 = 0.69), and citizen scientists produced comparable results (R2 = 0.58), highlighting the potential of a large-scale citizen-based approach for SOC monitoring.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:100643
Publisher:MPDI

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation