Realizability of Point ProcessesKuna, T., Lebowitz, J.L. and Speer, E.R. (2007) Realizability of Point Processes. Journal of Statistical Physics, 129 (3). pp. 417-439. ISSN 0022-4715 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/s10955-007-9393-y Abstract/SummaryThere are various situations in which it is natural to ask whether a given collection of k functions, ρ j (r 1,…,r j ), j=1,…,k, defined on a set X, are the first k correlation functions of a point process on X. Here we describe some necessary and sufficient conditions on the ρ j ’s for this to be true. Our primary examples are X=ℝ d , X=ℤ d , and X an arbitrary finite set. In particular, we extend a result by Ambartzumian and Sukiasian showing realizability at sufficiently small densities ρ 1(r). Typically if any realizing process exists there will be many (even an uncountable number); in this case we prove, when X is a finite set, the existence of a realizing Gibbs measure with k body potentials which maximizes the entropy among all realizing measures. We also investigate in detail a simple example in which a uniform density ρ and translation invariant ρ 2 are specified on ℤ; there is a gap between our best upper bound on possible values of ρ and the largest ρ for which realizability can be established.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |