Synergistic effect of (3-Aminopropyl)Trimethoxysilane treated ZnO and corundum nanoparticles under UV-irradiation on UV-cutoff and IR-absorption spectra of acrylic polyurethane based nanocomposite coatingMohd Haniffa, M. A. C., Ching, Y. C., Chuah, C. H., Ching, K. Y. ORCID: https://orcid.org/0000-0002-1528-9332 and Liou, N.-S. (2019) Synergistic effect of (3-Aminopropyl)Trimethoxysilane treated ZnO and corundum nanoparticles under UV-irradiation on UV-cutoff and IR-absorption spectra of acrylic polyurethane based nanocomposite coating. Polymer Degradation and Stability, 159. pp. 205-216. ISSN 0141-3910
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.polymdegradstab.2018.11.009 Abstract/SummaryZnO and corundum (α–Al2O3) nanoparticles were successfully synthesized by aqueous precipitation and sintering techniques respectively. ZnO nanoparticles were effectively coated with (3-aminopropyl)trimethoxysilane (APTMS) by polycondensation method to prevent the photocatalytic activity of ZnO during a UV-weathering study. X-ray diffractogram and FTIR were used to confirm the crystalline structure of as prepared nanoparticles, blue shift of the Alsingle bondO bond and the formation of a secondary amine via polycondensation of APTMS over ZnO surface. The prepared APTMS-ZnO, corundum and commercially available surface modified hydrophobic SiO2 (M − SiO2) nanoparticles were used to prepare the acrylic polyurethane (AP: Poly-Macrynal® SM 510 N coating resign) bases nanocomposite coating on a polyurethane substrate. Individual and mixed nanoparticles were dispersed into acrylic polyurethane to prepare the coating layer on polyurethane film substrate separately. IR-active and UV–visible regions of the FTIR and UV–Vis spectroscopies were used to investigate the synergistic effect of the nanoparticles on a selected range of the radiative spectrum, especially the UV-resistant and IR-absorption properties of the coated films with and without exposure of UV-irradiations. Polyurethane substrate coated with APTMS-ZnO (2 wt%) based acrylic polyurethane-based nanocomposite coating (APUC) layer containing 2 wt% corundum (D50) and 6 wt% M − SiO2 (F50) exhibited 98.77% and 97.60% of UV-resistant property respectively. These results indicate that the visible light transparency and transmittance ability reduced significantly after 500 h of UV-irradiation exposure. Both of the activity and deformation have great impact on the IR-absorption property of the APUC.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |