On the half-space matching method for real wavenumber
Bonnet-Ben Dhia, A.-S., Chandler-Wilde, S. N.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1137/21M1459216 Abstract/SummaryThe Half-Space Matching (HSM) method has recently been developed as a new method for the solution of 2D scattering problems with complex backgrounds, providing an alternative to {Perfectly Matched Layers} (PML) or other artificial boundary conditions. Based on half-plane representations for the solution, the scattering problem is rewritten as a system coupling (1) a standard finite element discretisation localised around the scatterer and (2) integral equations whose unknowns are traces of the solution on the boundaries of a finite number of overlapping half-planes contained in the domain. While satisfactory numerical results have been obtained for real wavenumbers, well-posedness and equivalence of this HSM formulation to the original scattering problem have been established only for complex wavenumbers. In the present paper we show, in the case of a homogeneous background, that the HSM formulation is equivalent to the original scattering problem also for real wavenumbers, and so is well-posed, provided the traces satisfy radiation conditions at infinity analogous to the standard Sommerfeld radiation condition. {As a key component of our argument we show that, if the trace on the boundary of a half-plane satisfies our new radiation condition, then the corresponding solution to the half-plane Dirichlet problem satisfies the Sommerfeld radiation condition in a slightly smaller half-plane.} We expect that this last result will be of independent interest, in particular in studies of rough surface scattering.
Download Statistics DownloadsDownloads per month over past year Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |
Lists
Lists