Accessibility navigation

Image registration techniques and applications: comparative study on remote sensing imagery

Ihmeida, M. and Wei, H. (2021) Image registration techniques and applications: comparative study on remote sensing imagery. In: 14th International Conference on Developments in eSystems Engineering (DeSE), 7-10 DEC 2021, Sharjah, United Arab Emirates, pp. 142-148,

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/DeSE54285.2021.9719538


Image registration is a crucial task in many computer vision applications. It is the process of matching and aligning two or more images of a scene. These images can be captured from different viewpoints, different sensors, or different times. Feature based image registration has four main steps: feature detection and description, feature matching, outliers rejection and computing homography and image re-sampling. Computational cost and registration accuracy of feature-based image registration mainly depend on the robustness of feature detection and description methods. Therefore, choosing an optimal feature detection and description method is vital in image registration applications. This research illustrates a comparison between popular image registration algorithms; Scale-invariant feature transform (SIFT), Speeded Up Robust Features (SURF), Oriented FAST and Rotated BRIEF (ORB), KAZE, Binary Robust Invariant Scalable Keypoints (BRISK) and Accelerated-KAZE (AKAZE) in different scenarios: rotation (0 to 360 degrees), scaling (25% to 600%) and multitemporal. The remote sensing images that are used in the experiments are Radar images, Aerial images, and Unmanned Aerial Vehicle (UAV) images. Nearest Neighbour Distance Ratio (NNDR) is performed in the feature matching, whereas RANSAC is applied to reject the outliers matching. The results of the experiments show that SIFT outperforms other algorithms, showing strong stability and high precision in all scenarios. As for real-time application, ORB performs well, and it is the fastest algorithm for all scenarios and then AKAZE as the second fastest one

Item Type:Conference or Workshop Item (Paper)
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
ID Code:104787

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation