Fruit development in sweet cherryVignati, E., Lipska, M., Dunwell, J. M. ORCID: https://orcid.org/0000-0003-2147-665X, Caccamo, M. and Simkin, A. J. (2022) Fruit development in sweet cherry. Plants, 11 (12). 1531. ISSN 2223-7747
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/plants11121531 Abstract/SummaryFruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti‐inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build‐up of LDL‐cholesterol in blood plasma and generally reduce the risks of disease and age‐related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption.
DownloadsDownloads per month over past year
1. Faust, M.; Surányi, D. Origin and dissemination of cherry. Horticultural Reviews 1997, 19, 263‐317.
2. Guajardo, V.; Solís, S.; Sagredo, B.; Gainza, F.; Muñoz, C.; Gasic, K.; Hinrichsen, P. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping‐by‐sequencing (GBS). PLoS One 2015, 10, e0127750, doi:10.1371/journal.pone.0127750.
3. Koepke, T.; Schaeffer, S.; Krishnan, V.; Jiwan, D.; Harper, A.; Whiting, M.; Oraguzie, N.; Dhingra, A. Rapid gene‐based SNP and haplotype marker development in non‐model eukaryotes using 3ʹUTR sequencing. BMC Genomics 2012, 13, 18, doi:10.1186/1471‐2164‐13‐18.
4. Tan, Q.; Li, S.; Zhang, Y.; Chen, M.; Wen, B.; Jiang, S.; Chen, X.; Fu, X.; Li, D.; Wu, H.; et al. Chromosome‐level genome assemblies of five Prunus species and genome‐wide association studies for key agronomic traits in peach. Horticulture Research 2021, 8, 213, doi:10.1038/s41438‐021‐00648‐2.
5. Jung, S.; Staton, M.; Lee, T.; Blenda, A.; Svancara, R.; Abbott, A.; Main, D. GDR (Genome Database for Rosaceae): integrated web‐database for Rosaceae genomics and genetics data. Nucleic Acids Research 2008, 36, D1034‐1040, doi:10.1093/nar/gkm803.
6. Scott, R.J.; Spielman, M.; Dickinson, H.G. Stamen structure and function. Plant Cell 2004, 16 Suppl, S46‐60, doi:10.1105/tpc.017012.
7. Abrol, D.P. Stone Fruits. In Pollination Biology, Vol.1: Pests and pollinators of fruit crops, Abrol, D.P., Ed.; Springer International Publishing: Cham, 2015; pp. 143‐175.
8. Srivastava, R.C.; Singh, I. Floral biology, fruit‐set, fruit‐drop and physicochemical characters of sweet‐cherry (Prunus avium L.). Indian Journal of Agricultural Science 1970, 40, 400‐420.
9. Kron, P.; Husband, B.C. The effects of pollen diversity on plant reproduction: insights from apple. Sexual Plant Reproduction 2006, 19, 125‐131.
10. Ughini, V.; Roversi, A. Investigations on sweet cherry effective pollination period. ActaHortic. 1996, 410, 423‐426, doi:10.17660/ActaHortic.1996.410.68.
11. Stösser, R.; S.F., A. Pollen tube growth and fruit set as influenced by senescence of stigma, style and ovules. ActaHortic. 1983, 139, 13‐22.
12. Roversi, A.; Ughini, V. How long should the period for a successful pollination of sweet cherry be? ActaHortic. 1998, 468, 615‐620.
13. Thompson, M. Flowering, Pollination and Fruit Set. In Cherries: Crop Physiology, Production and Uses, A.D., W., N.E., L., Eds.; CAB International: Oxon, UK, 1996; pp. 223‐241.
14. Godini, A.; Palasciano, M.; Cozzi, G.; Petruzzi, G. Role of self‐pollination and horticultural importance of self‐compatibility in cherry. ActaHortic. 1998, 468, 567‐574.
15. Hauck, N.R.; Yamane, H.; Tao, R.; Iezzoni, A.F. Self‐compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sexual Plant Reproduction 2002, 15, 39‐46.
16. Dirlevander, E.; Claverie, J.; Wünsch, A.; Iezzoni, A.F. Cherry. In Genome Mapping and Molecular Breeding in Plants, Kole, C., Ed.; SpringerVerlag: Berlin, Heidelberg, 2007; Volume 4, pp. 103‐ 118.
17. Crane, M.B.; Brown, A.G. Incompatibility and sterility in the sweet cherry, Prunus avium L. Journal of Pomology and Horticultural Science 1938, 15, 116.
18. Crane, M.B.; Lawrence, W.J.C. Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. Journal of Pomology and Horticultural Science 1928, 7, 276‐301.
19. Sebolt, A.M.; Iezzoni, A.F. Utilization of the S‐locus as a genetic marker in cherry to differentiate among different pollen donors. HortScience 2009, 44, 1542‐1546, doi:10.21273/hortsci.44.6.1542.
20. Wiersma, P.A.; Wu, Z.; Zhou, L.; Hampson, C.; Kappel, F. Identification of new self‐incompatibility alleles in sweet cherry (Prunus avium L.) and clarification of incompatibility groups by PCR and sequencing analysis. Theoretical and Applied Genetics 2001, 102, 700‐708, doi:10.1007/s001220051700.
21. Lech, W.; Małodobry, M.; Dziedzic, E.; Bieniasz, M.; Doniec, S. Biology of sweet cherry flowering. Journal of Fruit and Ornamental Plant Research 2008, 16, 189–199.
22. Akšić, M.F.; Čolić, S.; Meland, M.; Natić, M. Sugar and polyphenolic diversity in floral nectar of cherry. In Co‐Evolution of Secondary Metabolites, Mérillon, J.‐M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2020; pp. 755‐773.
23. Eeraerts, M.; Borremans, L.; Smagghe, G.; Meeus, I. A growers’ perspective on crop pollination and measures to manage the pollination service of wild pollinators in sweet cherry cultivation. Insects 2020, 11, 372.
24. Holzschuh, A.; Dudenhöffer, J.‐H.; Tscharntke, T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation 2012, 153, 101‐107, doi:https://doi.org/10.1016/j.biocon.2012.04.032.
25. Eeraerts, M.; Smagghe, G.; Meeus, I. Pollinator diversity, floral resources and semi‐natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry. Agriculture, Ecosystems & Environment 2019, 284, 106586,
doi:https://doi.org/10.1016/j.agee.2019.106586.
26. Hedhly, A.; Hormaza, J.I.; M., H. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). American Journal of Botany 2004, 91, 558‐564.
27. Beppu, K.; Komatsu, N.; Yamane, H.; Yaegaki, H.; Yamaguchi, M.; Tao, R.; Kataoka, I. Se‐haplotype confers self‐compatibility in Japanese plum (Prunus salicina Lindl.). The Journal of Horticultural Science and Biotechnology 2005, 80, 760‐764, doi:10.1080/14620316.2005.11512011.
28. Beppu, K.; Kataoka, I. High temperature rather than drought stress is responsible for the occurrence of double pistils in `Satohnishikiʹ sweet cherry. Scientia Horticulturae 1999, 81, 125‐134, doi:https://doi.org/10.1016/S0304‐4238(99)00007‐2.
29. Eaton, G.W. A study of the megagametophyte in P. avium and its relation to fruit setting. Canadian Journal of Plant Science 1959, 39, 466‐476.
30. Bowman, J.L.; Smyth, D.R.; Meyerowitz, E.M. Genetic interactions among floral homeotic genes of Arabidopsis. Development 1991, 112, 1 LP – 20.
31. Coen, E.S.; Meyerowitz, E.M. The war of the whorls: genetic interactions controlling flower development. Nature
Communications 1991, 353, 31–37.
32. Theißen, G. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 2001, 4, 75‐85, doi:10.1016/s1369‐5266(00)00139‐4.
33. Goto, K.; Kyozuka, J.; Bowman, J.L. Turning floral organs into leaves, leaves into floral organs. Current Opinions in Genetics and Development 2001, 11, 449‐456, doi:10.1016/s0959‐437x(00)00216‐1.
34. Theißen, G.; Melzer, R.; Rümpler, F. MADS‐domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 2016, 143, 3259‐3271, doi:10.1242/dev.134080.
35. Theißen, G.; Saedler, H. Floral quartets. Nature Communications 2001, 409, 469–471.
36. Gramzow, L.; Theissen, G. A hitchhikers guide to the MADS world of plants. Genome Biology 2010, 11, 214, doi:10.1186/gb‐2010‐11‐6‐214.
37. Kaufmann, K.; Melzer, R.; Theissen, G. MIKC‐type MADS‐domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 2005, 347, 183‐198, doi:10.1016/j.gene.2004.12.014.
38. Puranik, S.; Acajjaoui, S.; Conn, S.; Costa, L.; Conn, V.; Vial, A.; Marcellin, R.; Melzer, R.; Brown, E.; Hart, D.; et al. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. The Plant Cell 2014, 26, 3603‐3615, doi:10.1105/tpc.114.127910.
39. Yang, Y.; Fanning, L.; Jack, T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant Journal 2003, 33, 47‐59, doi:10.1046/j.0960‐7412.2003.01473.x.
40. Theißen, G.; Gramzow, L. Chapter 8 ‐ Structure and evolution of plant MADS domain transcription factors. In Plant Transcription Factors: Evolutionary, Structural and Functional Aspects, Gonzalez, D.H., Ed.; Academic Press: 2016; pp. 127–138.
41. Varoquaux, F.; Blanvillain, R.; Delseny, M.; Gallois, P. Less is better: new approaches for seedless fruit production. Trends in Biotechnology 2000, 18, 233‐242, doi:10.1016/s0167‐7799(00)01448‐7.
42. Dorcey, E.; Urbez, C.; Blázquez, M.A.; Carbonell, J.; Perez‐Amador, M.A. Fertilization‐dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal 2009, 58, 318‐332, doi:10.1111/j.1365‐313X.2008.03781.x.
43. Vriezen, W.H.; Feron, R.; Maretto, F.; Keijman, J.; Mariani, C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytologist 2008, 177, 60‐76, doi:10.1111/j.1469‐8137.2007.02254.x.
44. Wang, H.; Schauer, N.; Usadel, B.; Frasse, P.; Zouine, M.; Hernould, M.; Latché, A.; Pech, J.C.; Fernie, A.R.; Bouzayen, M. Regulatory features underlying pollination‐dependent and ‐independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 2009, 21, 1428‐1452, doi:10.1105/tpc.108.060830.
45. Tukey, H.B. Growth of the embryo, seed, and pericarp of the sour cherry (Prunus cerasus) in relation to season of fruit ripening. Proceedings of the American Society for Horticultural Science 1934, 31, 125–144.
46. Lilleland, O. Growth study of the plum fruit‐I. The growth and changes in chemical composition of the climax plum. Proceeding
of the American Society for Horticultural Science 1933, 30, 203–208.
47. Lilleland, O. Growth study of the peach fruit. Proceeding of the American Society for Horticultural Science 1935, 33, 269–279.
48. Coombe, B.G. The development of fleshy fruits. Annual Review of Plant Physiology 1976, 27, 207‐228,
doi:10.1146/annurev.pp.27.060176.001231.
49. Bollard, E.G. The physiology and nutrition of developing fruit. In The biochemistry of fruit and their products, Hulme, A.C., Rhodes, M.J., Eds.; FAO of the United Nations: 1970; Volume 1.
50. Lilleland, O.; Newsome, L. A growth study of the cherry fruit. Proceedings of the American Society for Horticultural Science 1934, 32, 291‐299.
51. Chalmers, D.J.; Ende, B.V.D. A reappraisal of the growth and development of peach fruit. Functional Plant Biology 1975, 2, 623‐634.
52. Gibeaut, D.M.; Whiting, M.D.; Einhorn, T. Time indices of multiphasic development in genotypes of sweet cherry are similar from dormancy to cessation of pit growth. Annals of Botany 2017, 119, 465‐475, doi:10.1093/aob/mcw232.
53. Tukey, H.B.; Young, J.O. Histological study of the developing fruit of the sour cherry. Botanical Gazette 1939, 100, 723–749.
54. Farmer, J.B. Contributions to the morphology and physiology of pulpy fruits. Annals of Botany 1889, 3, 393–414.
55. Winton, A.L. The anatomy of edible berries. American Journal of Pharmacy (1835‐1907) 1904, 439, 533.
56. Kapoor, L.; Simkin, A.J.; George Priya Doss, C.; Siva, R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology 2022, 22, 27, doi:10.1186/s12870‐021‐03411‐w.
57. Fukano, Y.; Tachiki, Y. Evolutionary ecology of climacteric and non‐climacteric fruits. Biology Letters 2021, 17, 20210352, doi:doi:10.1098/rsbl.2021.0352.
58. Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and nonclimacteric fruit and the ubiquity of ethylene‐An overview. J Food Sci Technol 2012, 49, 1‐21, doi:10.1007/s13197‐011‐0293‐4.
59. Klee, H.J.; Giovannoni, J.J. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics 2011,
45, 41‐59, doi:10.1146/annurev‐genet‐110410‐132507.
60. Giovannoni, J.J. Genetic regulation of fruit development and ripening. The Plant Cell 2004, 16 Suppl, S170‐S180,
doi:10.1105/tpc.019158.
61. Setha, S.; Kondo, S.; Hirai, N.; Ohigashi, H. Quantification of ABA and its metabolites in sweet cherries usingdeuterium‐labeled internal standards. Plant Growth Regulation 2005, 45, 183‐188, doi:10.1007/s10725‐005‐3088‐7.
62. Gong, Y.; Fan, X.; Mattheis, J.P. Responses of `Bingʹ and `Rainierʹ sweet cherries to ethylene and 1‐methylcyclopropene. Journal of the American Society for Horticultural Science jashs 2002, 127, 831‐835, doi:10.21273/jashs.127.5.831.
63. Li, S.; Andrews, P.K.; Patterson, M.E. Effects of ethephon on the respiration and ethylene evolution of sweet cherry (Prunus avium L.) fruit at different development stages. Postharvest Biology and Technology 1994, 4, 235‐243,
doi:https://doi.org/10.1016/0925‐5214(94)90033‐7.
64. Kondo, S.; Gemma, H. Relationship between Abscisic Acid (ABA) content and maturation of the sweet cherry. Journal of the Japanese Society for Horticultural Science 1993, 62, 63‐68, doi:10.2503/jjshs.62.63.
65. Hartmann, C. Biochemical changes in harvested cherries. Postharvest Biology and Technology 1992, 1, 231‐240,
doi:https://doi.org/10.1016/0925‐5214(92)90006‐B.
66. Kondo, S.; Inoue, K. Abscisic acid (ABA) and 1‐aminocyclopropane‐l‐carboxylic acid (ACC) content during growth of ‘Satohnishiki’ cherry fruit, and the effect of ABA and ethephon application on fruit quality. Journal of Horticultural Science 1997, 72, 221‐227, doi:10.1080/14620316.1997.11515509.
67. Ishiguro, T.; Yamaguchi, M.; Nishimura, K.; Satoh, I. Changes of fruit characteristics and respiration in sweet cherry (Prunus avium L.) during ripening. Journal of Japanese Society for Horticulture Science 1993, 62, 146‐147.
68. Hartmann, C. Ethylene and ripening of a non‐climacteric fruit: The cherry. ActaHortic. 1989, 258, 89‐96,
doi:10.17660/ActaHortic.1989.258.8.
69. Ren, J.; Chen, P.; Dai, S.J.; Li, P.; Li, Q.; Ji, K.; Wang, Y.P.; Leng, P. Role of abscisic acid and ethylene in sweet cherry fruit maturation: molecular aspects. New Zealand Journal of Crop and Horticultural Science 2011, 39, 161‐174, doi:10.1080/01140671.2011.563424.
70. Castellarin, S.D.; Gambetta, G.A.; Wada, H.; Krasnow, M.N.; Cramer, G.R.; Peterlunger, E.; Shackel, K.A.; Matthews, M.A. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. Journal of Experimental Botany 2015, 67, 709‐722, doi:10.1093/jxb/erv483.
71. Zhang, M.; Yuan, B.; Leng, P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany 2009, 60, 1579‐1588, doi:10.1093/jxb/erp026.
72. Coombe, B.G.; Hale, C.R. The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiology 1973, 51, 629‐634, doi:10.1104/pp.51.4.629.
73. Luo, H.; Dai, S.; Ren, J.; Zhang, C.; Ding, Y.; Li, Z.; Sun, Y.; Ji, K.; Wang, Y.; Li, Q.; et al. The role of ABA in the maturation and postharvest life of a monclimacteric sweet cherry fruit. Journal of Plant Growth Regulation 2014, 33, 373‐383, doi:10.1007/s00344‐013‐9388‐7.
74. Winkel‐Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 2001, 126, 485‐493, doi:10.1104/pp.126.2.485.
75. Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins.
Phytotherapy Research 2016, 30, 1265‐1286, doi:10.1002/ptr.5642.
76. Clayton‐Cuch, D.; Yu, L.; Shirley, N.; Bradley, D.; Bulone, V.; Böttcher, C. Auxin treatment enhances anthocyanin production in the non‐climacteric sweet cherry (Prunus avium L.). International Journal of Molecular Sciences 2021, 22, 10760.
77. Kappel, F.; Fisher‐Fleming, B.; Hogue, E. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience 1996, 31, 443‐446, doi:10.21273/hortsci.31.3.443.
78. Zheng, X.; Yue, C.; Gallardo, K.; McCracken, V.; Luby, J.; McFerson, J. What attributes are consumers looking for in sweet cherries? Evidence from choice experiments. Agricultural and Resource Economics Review 2016, 45, 124‐142, doi:10.1017/age.2016.13.
79. Guyer, D.E.; Sinha, N.K.; Chang, T.S.; Cash, J.N. Physiochemical and sensory characteristics of selected Michigan sweet cherry (Prunus avium L.) cultivars. Journal of Food Quality 1993, 16, 355–370.
80. Cliff, M.A.; Dever, M.C.; Hall, J.W.; Giraud, B. Development and evaluation of multiple regression models for predicting sweet cherry liking. Food Research International 1996, 28, 583–589.
81. Lyngstad, L.; Sekse, L. Economic aspects of developing a high sweet cherry product in Norway. ActaHortic. 1995, 379, 313–320.
82. Sekse, L.; Lyngstad, L. Strategies for maintaining high quality in sweet cherries during harvesting, handling and marketing. ActaHortic. 1996, 410, 351‐355.
83. Wermund, U.; Fearne, A. Key challenges facing the cherry supply chain in the UK. ActaHortic. 2000, 536, 613‐624.
84. Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology 2003, 28, 159‐167, doi:https://doi.org/10.1016/S0925‐5214(02)00173‐4.
85. Konarska, A. Characteristics of Fruit (Prunus domestica L.) Skin: Structure and Antioxidant Content. International Journal of Food Properties 2015, 18, 2487‐2499, doi:10.1080/10942912.2014.984041.
86. Aschan, G.; Pfanz, H. Non‐foliar photosynthesis – a strategy of additional carbon acquisition. Flora 2003, 198, 81‐97.
87. Millar, A.H.; Whelan, J.; Soole, K.L.; Day, D.A. Organization and Regulation of Mitochondrial Respiration in Plants. Annual Review of Plant Biology 2011, 62, 79‐104, doi:10.1146/annurev‐arplant‐042110‐103857.
88. Sui, X.; Shan, N.; Hu, L.; Zhang, C.; Yu, C.; Ren, H.; Turgeon, R.; Zhang, Z. The complex character of photosynthesis in cucumber fruit. J Exp Bot 2017, 68, 1625‐1637, doi:10.1093/jxb/erx034.
89. Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non‐foliar tissues: Implications for yield. The Plant Journal 2020, 101, 1001‐1015.
90. Vogg, G.; Fischer, S.; Leide, J.; Emmanuel, E.; Jetter, R.; Levy, A.A.; Riederer, M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very‐long‐chain fatty acid β‐ketoacyl‐CoA synthase. Journal of Experimental Botany 2004, 55, 1401‐1410, doi:10.1093/jxb/erh149.
91. Tanaka, A.; Fujita, K.; Kikuchi, K. Nutrio‐physiological studies on the tomato plant. Soil Science and Plant Nutrition 1974, 20, 57‐68, doi:10.1080/00380768.1974.10433228.
92. Hetherington, S.E.; Smillie, R.M.; Davies, W.J. Photosynthetic activities of vegetative and fruiting tissues of tomato. J Exp Bot 1998, 49, 1173‐1181, doi:10.1093/jxb/49.324.1173.
93. Obiadalla‐Ali, H.; Fernie, A.R.; Lytovchenko, A.; Kossmann, J.; Lloyd, J.R. Inhibition of chloroplastic fructose 1,6‐bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta 2004,
219, 533‐540, doi:10.1007/s00425‐004‐1257‐y.
94. Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research 2022, 152, 23–42, doi:10.1007/s11120‐021‐00892‐6.
95. Brazel, A.J.; OʹMaoileidigh, D.S. Photosynthetic activity of reproductive organs. Journal of Experimental Botany 2019, 70, 1737‐1754, doi:10.1093/jxb/erz033.
96. Roeder, A.H.; Yanofsky, M.F. Fruit development in Arabidopsis. Arabidopsis Book 2006, 4, e0075, doi:10.1199/tab.0075.
97. Giovannoni, J.J. Fruit ripening mutants yield insights into ripening control. Current Opinions in Plant Biology 2007, 10, 283‐289, doi:10.1016/j.pbi.2007.04.008.
98. Ma, H.; dePamphilis, C. The ABCs of floral evolution. Cell 2000, 101, 5‐8, doi:10.1016/s0092‐8674(00)80618‐2.
99. Tani, E.; Polidoros, A.N.; Flemetakis, E.; Stedel, C.; Kalloniati, C.; Demetriou, K.; Katinakis, P.; Tsaftaris, A.S. Characterization and expression analysis of AGAMOUS‐like, SEEDSTICK‐like, and SEPALLATA‐like MADS‐box genes in peach (Prunus persica) fruit. Plant Physiology and Biochemistry 2009, 47, 690‐700, doi:10.1016/j.plaphy.2009.03.013.
100. Pan, I.L.; McQuinn, R.; Giovannoni, J.J.; Irish, V.F. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany 2010, 61, 1795‐1806, doi:10.1093/jxb/erq046.
101. Pnueli, L.; Hareven, D.; Rounsley, S.D.; Yanofsky, M.F.; Lifschitz, E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell 1994, 6, 163‐173, doi:10.1105/tpc.6.2.163.
102. Boss, P.K.; Vivier, M.; Matsumoto, S.; Dry, I.B.; Thomas, M.R. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Molecular
Biology 2001, 45, 541‐553, doi:10.1023/a:1010634132156.
103. Chaidamsari, T.; Samanhudi; Sugiarti, H.; Santoso, D.; Angenent, G.C.; de Maagd, R.A. Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Science 2006, 170, 968–975.
104. Rosin, F.M.; Aharoni, A.; Salentijn, E.M.J.; Schaart, J.G.; Boone, M.J.; Hannapel, D.J. Expression patterns of a putative homolog of AGAMOUS, STAG1, from strawberry. Plant Science 2003, 165, 959‐968, doi:https://doi.org/10.1016/S0168‐9452(03)00233‐4.
105. Liljegren, S.J.; Roeder, A.H.; Kempin, S.A.; Gremski, K.; Østergaard, L.; Guimil, S.; Reyes, D.K.; Yanofsky, M.F. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 2004, 116, 843‐853, doi:10.1016/s0092‐8674(04)00217‐x.
106. Liljegren, S.J.; Ditta, G.S.; Eshed, Y.; Savidge, B.; Bowman, J.L.; Yanofsky, M.F. SHATTERPROOF MADS‐box genes control seed dispersal in Arabidopsis. Nature 2000, 404, 766‐770, doi:10.1038/35008089.
107. Bemer, M.; Karlova, R.; Ballester, A.R.; Tikunov, Y.M.; Bovy, A.G.; Wolters‐Arts, M.; Rossetto Pde, B.; Angenent, G.C.; de Maagd, R.A. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene‐independent aspects of fruit ripening. The Plant Cell 2012, 24, 4437‐4451, doi:10.1105/tpc.112.103283.
108. Fujisawa, M.; Shima, Y.; Nakagawa, H.; Kitagawa, M.; Kimbara, J.; Nakano, T.; Kasumi, T.; Ito, Y. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. The Plant Cell 2014, 26, 89‐101, doi:10.1105/tpc.113.119453.
109. Shima, Y.; Kitagawa, M.; Fujisawa, M.; Nakano, T.; Kato, H.; Kimbara, J.; Kasumi, T.; Ito, Y. Tomato FRUITFULL homologues act in fruit ripening via forming MADS‐box transcription factor complexes with RIN. Plant Molecular Biology 2013, 82, 427‐438, doi:10.1007/s11103‐013‐0071‐y.
110. Vrebalov, J.; Pan, I.L.; Arroyo, A.J.M.; McQuinn, R.; Chung, M.; Poole, M.; Rose, J.; Seymour, G.; Grandillo, S.; Giovannoni, J.; et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. The Plant Cell 2009, 21, 3041‐3062, doi:10.1105/tpc.109.066936.
111. Pineda, B.; Giménez‐Caminero, E.; García‐Sogo, B.; Antón, M.T.; Atarés, A.; Capel, J.; Lozano, R.; Angosto, T.; Moreno, V. Genetic and physiological characterization of the arlequin insertional mutant reveals a key regulator of reproductive development in tomato. Plant Cell Physiology 2010, 51, 435‐447, doi:10.1093/pcp/pcq009.
112. Tani, E.; Polidoros, A.N.; Tsaftaris, A.S. Characterization and expression analysis of FRUITFULL‐ and SHATTERPROOF‐like genes from peach (Prunus persica) and their role in split‐pit formation. Tree Physiology 2007, 27, 649‐659, doi:10.1093/treephys/27.5.649.
113. Tadiello, A.; Pavanello, A.; Zanin, D.; Caporali, E.; Colombo, L.; Rotino, G.L.; Trainotti, L.; Casadoro, G. A PLENA‐like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. Journal of Experimental Botany 2009, 60, 651‐661, doi:10.1093/jxb/ern313.
114. Dardick, C.D.; Callahan, A.M.; Chiozzotto, R.; Schaffer, R.J.; Piagnani, M.C.; Scorza, R. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology 2010, 8, 13,
doi:10.1186/1741‐7007‐8‐13.
115. Heijmans, K.; Ament, K.; Rijpkema, A.S.; Zethof, J.; Wolters‐Arts, M.; Gerats, T.; Vandenbussche, M. Redefining C and D in the petunia ABC. The Plant Cell 2012, 24, 2305‐2317, doi:10.1105/tpc.112.097030.
116. Fourquin, C.; Ferrándiz, C. Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C‐function genes in eudicots. The Plant Journal 2012, 71, 990‐1001, doi:10.1111/j.1365‐313X.2012.05046.x.
117. Favaro, R.; Pinyopich, A.; Battaglia, R.; Kooiker, M.; Borghi, L.; Ditta, G.; Yanofsky, M.F.; Kater, M.M.; Colombo, L. MADS‐box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 2003, 15, 2603‐2611, doi:10.1105/tpc.015123.
118. Pinyopich, A.; Ditta, G.S.; Savidge, B.; Liljegren, S.J.; Baumann, E.; Wisman, E.; Yanofsky, M.F. Assessing the redundancy of MADS‐box genes during carpel and ovule development. Nature 2003, 424, 85‐88, doi:10.1038/nature01741.
119. Singh, R.; Low, E.‐T.L.; Ooi, L.C.‐L.; Ong‐Abdullah, M.; Ting, N.‐C.; Nagappan, J.; Nookiah, R.; Amiruddin, M.D.; Rosli, R.; Manaf, M.A.A.; et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 2013, 500, 340‐344, doi:10.1038/nature12356.
120. McCune, L.M.; Kubota, C.; Stendell‐Hollis, N.R.; Thomson, C.A. Cherries and health: a review. Critical Reviews in Food Science and Nutrition 2011, 51, 1‐12, doi:10.1080/10408390903001719.
121. Kelley, D.S.; Adkins, Y.; Laugero, K.D. A review of the health benefits of cherries. Nutrients 2018, 10, 368, doi:10.3390/nu10030368.
122. Ansari, M.; Emami, S. β‐Ionone and its analogs as promising anticancer agents. European Journal of Medicinal Chemistry 2016, 123, 141‐154, doi:https://doi.org/10.1016/j.ejmech.2016.07.037.
123. Aloum, L.; Alefishat, E.; Adem, A.; Petroianu, G. Ionone Is More than a Violet’s Fragrance: A Review. Molecules 2020, 25, 5822.
124. Moshiri, M.; Vahabzadeh, M.; Hosseinzadeh, H. Clinical applications of saffron (Crocus sativus) and its constituents: A review. Drug Research (Stuttgart) 2015, 65, 287‐295, doi:10.1055/s‐0034‐1375681.
125. Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: biochemistry, pharmacology and treatment. British Journal of Pharmacology 2017, 174, 1290‐1324, doi:10.1111/bph.13625.
126. Faienza, M.F.; Corbo, F.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Grano, M.; Wang, D.Q.H.; DʹAmato, G.; Muraglia, M.; Franchini, C.; et al. Novel insights in health‐promoting properties of sweet cherries. Journal of Functional Foods 2020, 69, 103945,
doi:https://doi.org/10.1016/j.jff.2020.103945.
127. Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends in Food Science & Technology 2016, 55, 72‐83,
doi:https://doi.org/10.1016/j.tifs.2016.07.002.
128. Pashirzad, M.; Shafiee, M.; Avan, A.; Ryzhikov, M.; Fiuji, H.; Bahreyni, A.; Khazaei, M.; Soleimanpour, S.; Hassanian, S.M. Therapeutic potency of crocin in the treatment of inflammatory diseases: Current status and perspective. Journal of Cellular Physiology 2019, 234, 14601‐14611, doi:10.1002/jcp.28177.
129. Serrano, M.; Guillén, F.; Martínez‐Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. Journal of Agricultire and Food Chemistry 2005, 53, 2741‐2745, doi:10.1021/jf0479160.
130. Wojdyło, A.; Nowicka, P.; Laskowski, P.; Oszmiański, J. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry 2014, 62, 12332‐12345, doi:10.1021/jf504023z.
131. Chaovanalikit, A.; Wrolstad, R.E. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science 2004, 69.
132. Tsuda, T.; Watanabe, M.; Ohshima, K.; Norinobu, S.; Choi, S.W.; Kawakishi, S.; Osawa, T. Antioxidative activity of the anthocyanin pigments cyanidin 3‐O‐B‐D‐glucoside and cyanidin. Journal of Agricultire and Food Chemistry 1994, 42, 2407‐2410.
133. Tsuda, T.; Horio, F.; Kitoh, J.; Osawa, T. Protective effects of dietary cyanidin 3‐O‐B‐Dglucoside on liver ischemia‐reperfusion injury in rats. Archives of Biochemistry and Biophysics 1999, 368, 361‐366.
134. Crepaldi, G.; Carruba, M.; Comaschi, M.; Del Prato, S.; Frajese, G.; Paolisso, G. Dipeptidyl peptidase 4 (DPP‐4) inhibitors and their role in Type 2 diabetes management. Journal of Endocrinological Investigation 2007, 30, 610‐614, doi:10.1007/BF03346357.
135. Stoner, G.D.; Wang, L.S.; Zikri, N.; Chen, T.; Hecht, S.S.; Huang, C.; Sardo, C.; Lechner, J.F. Cancer prevention with freeze‐dried berries and berry components. Semin Cancer Biol 2007, 17, 403‐410, doi:10.1016/j.semcancer.2007.05.001.
136. Seeram, N.P. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of agricultural and food chemistry 2008, 56, 627‐629, doi:10.1021/jf071988k.
137. Seeram, N.P. Berry fruits for cancer prevention: current status and future prospects. Journal of agricultural and food chemistry 2008, 56, 630‐635, doi:10.1021/jf072504n.
138. Seeram, N.P. Emerging research supporting the positive effects of berries on human health and disease prevention. Journal of agricultural and food chemistry 2012, 60, 5685‐5686, doi:10.1021/jf203455z.
139. Neto, C.C.; Amoroso, J.W.; Liberty, A.M. Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 2008, 52 Suppl 1, S18‐27, doi:10.1002/mnfr.200700433.
140. Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct 2012, 3, 795‐809, doi:10.1039/c2fo30058c.
141. Bell, P.G.; McHugh, M.P.; Stevenson, E.; Howatson, G. The role of cherries in exercise and health. Scandinavian Journal of Medicine and Science in Sports 2014, 24, 477‐490, doi:10.1111/sms.12085.
142. Alba C, M.‐A.; Daya, M.; Franck, C. Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition 2019, 59, 626‐638, doi:10.1080/10408398.2017.1384918.
143. Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry antioxidants: from farm to table. Molecules 2010, 15, 6993‐7005, doi:10.3390/molecules15106993.
144. Coelho Rabello Lima, L.; Oliveira Assumpção, C.; Prestes, J.; Sérgio Denadai, B. Consumption of cherries as a strategy to attenuate exercise‐induced muscle damage and inflamation in humans. Nutricion Hospitalaria 2015, 32, 1885‐1893, doi:10.3305/nh.2015.32.5.9709.
145. Pollack, S. Consumer demand for fruits and vegetables: The U.S. example; Economic Research Service Publication WR‐S‐01‐1. U.S. Department of Agriculture: Washington, DC, 2001.
146. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press.: Cambridge, UK and New York, NY, USA 2007.
147. IPCC. Summary for Policymakers. In:Climate change and land: an IPCC special report on climate change, desertifcation, land degradation, sustainableland management, food security, and greenhouse gas fuxes in terrestrial ecosystems; Cambridge University Press: Cambridge, UK and New York, NY, USA., 2019.
148. Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2009, 2, 831‐836, doi:10.1038/ngeo689.
149. Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 2011, 109, 213, doi:10.1007/s10584‐011‐0156‐z.
150. NASA. Global climate change: Vital signs of the planet. https://climate.nasa.gov/413ppmquotes Available online: (accessed on 01/06/2022).
151. Atkinson, C.J.; Taylor, J.M.; Wilkins, D.; Besford, R.T. Effects of elevated CO2 on chloroplast components, gas exchange and growth of oak and cherry. Tree Physiology 1997, 17, 319‐325, doi:10.1093/treephys/17.5.319.
152. Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Scientia Horticulturae 2018, 240, 369‐377, doi:https://doi.org/10.1016/j.scienta.2018.06.042.
153. Wójcik, P.; Akgül, H.; Demirtaş, İ.; Sarısu, C.; Aksu, M.; Gubbuk, H. Effect of preharvest sprays of calcium chloride and sucrose on cracking and quality of ‘burlat’ sweet cherry fruit. Journal of Plant Nutrition 2013, 36, 1453‐1465, doi:10.1080/01904167.2013.793714.
154. Dong, Y.; Zhi, H.; Wang, Y. Cooperative effects of pre‐harvest calcium and gibberellic acid on tissue calcium content, quality attributes, and in relation to postharvest disorders of late‐maturing sweet cherry. Scientia Horticulturae 2019, 246, 123‐128,
doi:https://doi.org/10.1016/j.scienta.2018.10.067.
155. Livellara, N.; Saavedra, F.; Salgado, E. Plant based indicators for irrigation scheduling in young cherry trees. Agricultural Water Management 2011, 98, 684‐690, doi:https://doi.org/10.1016/j.agwat.2010.11.005.
156. Podestá, L.N.; Vallone, R.C.; Morábito, J.A.; Sánchez, E.E. Long‐term effect of water deficit irrigation on cherry vigor and precocity. ActaHortic. 2011, 889, 439‐444, doi:10.17660/ActaHortic.2011.889.55.
157. Demirtas, C.; Erturk, U.; Yazgan, S.; Candogan, B.N.; Soylu, A. Effects of different irrigation levels on the vegetative growth, flower bud formation and fruit quality of sweet cherry in western part of Turkey. Journal of Food, Agriculture and Environment 2008, 6, 173‐177.
158. Overbeck, V.; Blanke, M.M.; Schmitz, M. Modern training systems for forcing sweet cherries ‐ slender spindle or hedgerow for protected growing? ActaHortic. 2019, 1242, 657‐662, doi:10.17660/ActaHortic.2019.1242.97.
159. Goeckeritz, C.; Hollender, C.A. There is more to flowering than those DAM genes: the biology behind bloom in rosaceous fruit trees. Current Opinion in Plant Biology 2021, 59, 101995, doi:https://doi.org/10.1016/j.pbi.2020.101995.
160. Samish, R.M. Dormancy in woody plants. Annual Review of Plant Physiology 1954, 5, 183‐204.
161. Saure, M. Dormancy release in deciduous fruit trees. Horticultural Reviews 1985, 7, 239‐300.
162. Lloret, A.; Quesada‐Traver, C.; Ríos, G. Models for a molecular calendar of bud‐break in fruit trees. Scientia Horticulturae 2022, 297, 110972, doi:https://doi.org/10.1016/j.scienta.2022.110972.
163. Campoy, J.A.; Darbyshire, R.; Dirlewanger, E.; Quero‐García, J.; Wenden, B. Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation. Int J Biometeorol 2019, 63,
183‐192, doi:10.1007/s00484‐018‐1649‐5.
164. IPCC. Climate change 2014 impacts, adaptation and vulnerability: Part A: Global and sectoral aspects: Working group II contribution to the fifth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2014.
165. Walton, E.F.; Fowke, P.J. Effect of hydrogen cyanamide on kiwifruit shoot flower number and position. Journal of Horticultural Science 1993, 68, 529‐534.
166. Mcpherson, H.G.; Richardson, A.C.; Snelgar, W.P.; Currie, M.B. Effects of hydrogen cyanamide on budbreak and flowering in kiwifruit (Actinidia deliciosa ’Haywardʹ). New Zealand Journal of Crop and Horticultural Science 2001, 29, 277‐285.
167. Linsley‐Noakes, G.C. Improving flowering of kiwifruit in climatically marginal areas using hydrogen cyanamide. Scientia Horticulturae 1989, 38, 247‐259, doi:10.1016/0304‐4238(89)90072‐1.
168. Ionescu, I.A.; López‐Ortega, G.; Burow, M.; Bayo‐Canha, A.; Junge, A.; Gericke, O.; Møller, B.L.; Sánchez‐Pérez, R.
Transcriptome and Metabolite Changes during Hydrogen Cyanamide‐Induced Floral Bud Break in Sweet Cherry. Front Plant Sci 2017, 8, 1233, doi:10.3389/fpls.2017.01233.
169. Hawerroth, F.J.; Petri, J.L.; Leite, G.B. Budbreak Iinduction in apple trees by Erger and Clacium Nitrate application. ActaHortic. 2010, 884, 511‐516, doi:10.17660/ActaHortic.2010.884.65.
170. Ozkan, Y.; Ucar, M.; Yildiz, K.; Ozturk, B. Pre‐harvest gibberellic acid (GA3) treatments play an important role on bioactive compounds and fruit quality of sweet cherry cultivars. Scientia Horticulturae 2016, 211, 358‐362,
doi:https://doi.org/10.1016/j.scienta.2016.09.019.
171. Einhorn, T.C.; Wang, Y.; Turner, J. Sweet cherry fruit firmness and postharvest quality of late‐maturing cultivars are improved with low‐rate, single applications of gibberellic acid. American Society for Horticultural Science 2013, 48, 1010‐1017, doi:10.21273/hortsci.48.8.1010.
172. Basile, B.; Brown, N.; Valdes, J.M.; Cardarelli, M.; Scognamiglio, P.; Mataffo, A.; Rouphael, Y.; Bonini, P.; Colla, G. Plant‐based biostimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants 2021, 10, 619, doi:10.3390/plants10040619.
173. Rutkowski, K.; Łysiak, G.P. Thinning methods to regulate sweet cherry crops. A review. Applied Sciences 2022, 12, 1280.
174. Sekse, L. Fruit cracking in norwegian grown sweet cherries. Acta Agriculturae Scandinavica 1987, 37, 325‐328,
doi:10.1080/00015128709436563.
175. Chmielewski, F.‐M.; Götz, K.‐P. Performance of models for the beginning of sweet cherry blossom under current and changed climate conditions. Agricultural and Forest Meteorology 2016, 218‐219, 85‐91, doi:https://doi.org/10.1016/j.agrformet.2015.11.022.
176. Milić, B.; Keserović, Z.; Dorić, M.; Ognjanov, V.; Magazin, N. Fruit set and quality of self‐fertile sweet cherries as affected by chemical flower thinning. Horticultural Science (Prague) 2015, 42, 119‐124.
177. Kurlus, R.; Rutkowski, K.; Łysiak, G.P. Improving of cherry fruit quality and bearing regularity by chemical thinning with fertilizer. Agronomy 2020, 10, 1281.
178. Callahan, A.; Dardick, C.; Tosetti, R.; Lalli, D.; Scorza, R. 21st century approach to improving Burbank’s ‘Stoneless’ plum. Journal of the American Society for Horticultural Science 2015, 50, 195‐200.
179. Picarella, M.E.; Mazzucato, A. The occurrence of seedlessness in higher plants; Insights on roles and mechanisms of parthenocarpy. Frontiers in Plant Science 2019, 9, 1997, doi:10.3389/fpls.2018.01997.
180. Gustafson, F.G. Parthenocarpy: natural and artificial. Botanical Review 1942, 8, 599‐654.
181. Gustafson, F.G. Auxin distribution in fruits and its significance in fruit development. American Journal of Botany 1939, 26, 189–194.
182. Wilson, F.; Harrison, K.; Armitage, A.D.; Simkin, A.J.; Harrison, R.J. CRISPR/Cas9‐mediated mutagenesis of phytoene
desaturase in diploid and octoploid Strawberry. BMC Plant Methods 2019, 15, 45.
183. Aglawe, S.B.; Barbadikar, K.M.; Mangrauthia, S.K.; Madhav, M.S. New breeding technique ʺgenome editingʺ for crop improvement: applications, potentials and challenges. 3 Biotech 2018, 8, 336, doi:10.1007/s13205‐018‐1355‐3.
184. Georges, F.; Ray, H. Genome editing of crops: A renewed opportunity for food security. GM Crops and Food 2017, 8, 1‐12, doi:10.1080/21645698.2016.1270489.
185. Simkin, A.J. Genetic engineering for global food security: photosynthesis and biofortification. Plants 2019, 8, 586.
186. Simkin, A.J.; Lopez‐Calcagno, P.E.; Raines, C.A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimantal Botany 2019, 70, 1119‐1140, doi:10.1093/jxb/ery445.
187. Exposito‐Rodriguez, M.; Laissue, P.P.; Lopez‐Calcagno, P.E.; Mullineaux, P.M.; Raines, C.A.; Simkin, A.J. Development of pGEMINI, a plant gateway destination vector allowing the simultaneous integration of two cDNA via a single LR‐clonase reaction. Plants (Basel) 2017, 6, 55, doi:10.3390/plants6040055.
188. Engler, C.; Gruetzner, R.; Kandzia, R.; Marillonnet, S. Golden gate shuffling: a one‐pot DNA shuffling method based on type IIs restriction enzymes. Plos One 2009, 4, e5553, doi:10.1371/journal.pone.0005553.
189. Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. Plos One 2008, 3, e3647, doi:10.1371/journal.pone.0003647.
190. Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.M.; Werner, S.; Jones, J.D.; Patron, N.J.; Marillonnet, S. A golden gate modular cloning toolbox for plants. ACS Synth Biol 2014, 3, 839‐843, doi:10.1021/sb4001504.
191. Marillonnet, S.; Werner, S. Assembly of multigene constructs using golden gate cloning. In Glyco‐Engineering: Methods and Protocols, Castilho, A., Ed.; Springer New York: New York, NY, 2015; pp. 269‐284.
192. Alotaibi, S.S.; Alyassi, H.; Alshehawi, A.; Gaber, A.; Hassan, M.M.; Aljuaid, B.S.; Simkin, A.J.; Raines, C.A. Functional analysis of SBPase gene promoter in transgenic wheat under different growth conditions. Biotechnology 2019, 1, 15‐23.
193. Alotaibi, S.S.; Sparks, C.A.; Parry, M.A.J.; Simkin, A.J.; Raines, C.A. Identification of leaf promoters for use in transgenic wheat. Plants 2018, 7, 27, doi:10.3390/plants7020027.
194. Kuntz, M.; Chen, H.C.; Simkin, A.J.; Römer, S.; Shipton, C.A.; Drake, R.; Schuch, W.; Bramley, P.M. Upregulation of two
ripening‐related genes from a non‐climacteric plant (pepper) in a transgenic climacteric plant (tomato). The Plant Journal 1998, 13, 351‐361, doi:10.1046/j.1365‐313X.1998.00032.x.
195. Simkin, A.J.; McCarthy, J.; Petiard, V.; Tanksley, S.; Lin, C. Oleosin genes and promoters from coffee. Patent WO2,007,005,928. 17th December 2007.
196. Simkin, A.J.; Qian, T.; Caillet, V.; Michoux, F.; Ben Amor, M.; Lin, C.; Tanksley, S.; McCarthy, J. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. Journal of plant physiology 2006, 163, 691‐708, doi:10.1016/j.jplph.2005.11.008.
197. Mukherjee, S.; Stasolla, C.; Brule‐Babel, A.; Ayele, B.T. Isolation and characterization of rubisco small subunit gene promoter
from common wheat (Triticum aestivum L.). Plant Signaling and Behavior 2015, 10, e989033, doi:10.4161/15592324.2014.989033.
198. Feeney, M.; Bhagwat, B.; Mitchell, J.S.; Lane, W.D. Shoot regeneration from organogenic callus of sweet cherry (Prunus avium L.). Plant Cell, Tissue and Organ Culture 2007, 90, 201–214.
199. Matt, A.; Jehle, J.A. In vitro plant regeneration from leaves and internode sections of sweet cherry cultivars (Prunus avium L.). Plant Cell Reports 2005, 24, 468‐476, doi:10.1007/s00299‐005‐0964‐6.
200. Zong, X.; Denler, B.J.; Danial, G.H.; Chang, Y.; Song, G.‐q. Adventitious shoot regeneration and Agrobacterium tumefaciens mediated transient transformation of almond × peach hybrid rootstock ‘Hansen 536’. HortScience 2019, 54, 936‐940, doi:10.21273/hortsci13930‐19.
201. Blando, F.; Chiriaco, L.; Gerardi, C.; Lucchesini, M.; Rampino, P. Sweet cherry (Prunus avium L.) ʹGiorgiaʹ, adventitious regeneration from leaves of microplants. European Journal of Horticultural Science 2007, 72, 138‐143.
202. Bhagwat, B.; Lane, W.D. In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart. Plant Cell, Tissue and Organ Culture 2004, 78, 173‐178.
203. Canli, F.A.; Tian, L. In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.) cultivars. Scientia Horticulturae 2008, 116, 34‐40, doi:https://doi.org/10.1016/j.scienta.2007.10.023. University Staff: Request a correction | Centaur Editors: Update this record |