Accessibility navigation


Anticoagulant rodenticide blood-clotting dose-responses and resistance factors for Tyrosine139Cysteine (Y139C) heterozygous- and homozygous-resistant house mice (Mus musculus)

Baxter, M. A., Buckle, A. P., Endepols, S. and Prescott, C. V. (2022) Anticoagulant rodenticide blood-clotting dose-responses and resistance factors for Tyrosine139Cysteine (Y139C) heterozygous- and homozygous-resistant house mice (Mus musculus). Pest Management Science, 78 (11). pp. 4480-4487. ISSN 1526-4998

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

448kB
[img] Text - Accepted Version
· Restricted to Repository staff only

384kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/ps.7066

Abstract/Summary

Background The house mouse (Mus musculus) is a globally distributed rodent pest species against which anticoagulant rodenticides are widely used for the protection of human and animal health and the conservation of threatened wildlife. Anticoagulant-resistant house mice have been known for more than half a century. A house mouse strain was developed in the laboratory that was homozygous resistant for the single nucleotide polymorphism (SNP) Tyrosine139Cysteine (Y139C) and, subsequently, heterozygous resistant animals were produced from this strain by crossing with the homozygous susceptible strain. Results Using blood clotting response tests, resistance factors at the ED50 level in the homozygous resistant strain for the first-generation anticoagulants warfarin, chlorophacinone, diphacinone and coumatetralyl were in the range 31.5 to 628.0 for males (M) and 21.6 to 628.0 for females (F), thus indicating that Y139C house mice are substantially resistant to all these substances. Resistance factors at the ED50 level for the homozygous strain generated against the second-generation compounds were: brodifacoum (M, 1.7; F, 1.9), bromadiolone (M, 16.6; F, 21.0), difenacoum (M, 1.2; F, 2.7), difethialone (M, 1.5; F, 1.5), and flocoumafen (M, 0.9; F, 1.2). Equivalent values for the heterozygous strain were: brodifacoum (M, 1.6; F, 1.4), bromadiolone (M, 5.6; F, 6.5), difenacoum (M, 1.0; F, 1.3), difethialone (M, 1.1; F, 1.1), flocoumafen (M, 0.9; F, 1.1). Conclusion Y139C SNP homozygous resistant mice are more resistant to anticoagulants than heterozygous resistant animals. All first-generation anticoagulants are highly resisted and, among the second-generation compounds, Y139C mice are resistant to bromadiolone and sometimes to difenacoum.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
ID Code:106186
Publisher:Wiley

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation