1. Wang J, Nayak S, Koch K, Ming R. Carbon partitioning in sugarcane (Saccharum species). Front Plant Sci. 2013;4:201.
2. Shangguan L, Song C, Leng X, Kayesh E, Sun X, Fang J. Mining and comparison of the genes encoding the key enzymes involved in sugar biosynthesis in apple, grape, and sweet orange. Sci Hortic. 2014;165:311–8.
3. Wallaart RA. Distribution of sorbitol in Rosaceae. Phytochemistry. 1980;19(12):2603–10.
4. Webb KL, Burley JW. Sorbitol translocation in apple. Science. 1962;137(3532):766.
5. Potter D, Eriksson T, Evans RC, Oh S, Smedmark J, Morgan DR, et al. Phylogeny and classification of Rosaceae. Plant Syst Evol. 2007;266(1):5–43.
6. Ma C, Sun Z, Chen C, Zhang L, Zhu S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014;145:784–8.
7. Li MJ, Li PM, Ma FW, Dandekar AM, Cheng LL. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic Res. 2018;5:60.
8. Meng D, He MY, Bai Y, Xu HX, Dandekar AM, Fei ZJ, et al. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus
domestica). New Phytol. 2018;217(2):641–56.
9. Meng D, Li CL, Park HJ, Gonzalez J, Wang JY, Dandekar AM, et al. Sorbitol modulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple. Plant Cell. 2018;30(7):1562–81.
10. Hirai M. Sorbitol-6-phosphate dehydrogenase from loquat fruit. Plant Physiol. 1979;63(4):715–7.
11. Zhou R, Cheng L, Wayne R. Purification and characterization of sorbitol-6-phosphate phosphatase from apple leaves. Plant Sci. 2003;165(1):227–32.
12. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.
13. Bantog NA, Yamada K, Niwa N, Shiratake K, Yamaki S. Gene expression of NAD(+)-dependent sorbitol dehydrogenase and NADP(+)-dependent sorbitol-6-phosphate dehydrogenase during development of loquat (Eriobotrya japonica Lindl.) fruit. J Japan Soc Hortic Sci. 2000;69(3):231–6.
14. Yamaki S. A sorbitol oxidase that converts sorbitol to glucose in apple leaf. Plant Cell Physiol. 1980;21(4):591–9.
15. Liang D, Cui M, Wu S, Ma FW. Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Report. 2012;30(4):904–14.
16. Zhang JY, Tian RR, Dong JL, Zhao K, Li TH, Wang T. Response and regulation of the S6PDH gene in apple leaves under osmotic stress. J Hortic Sci Biotechnol. 2011;86(6):563–8.
17. Gao JJ, Sun YR, Zhu B, Peng RH, Wang B, Wang LJ, et al. Ectopic expression of sorbitol-6-phosphate 2-dehydrogenase gene from Haloarcula marismortui enhances salt tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant. 2018;40(6):108.
18. Aguayo MF, Ampuero D, Mandujano P, Parada R, Munoz R, Gallart M, et al. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana. Plant Sci. 2013;205-206:63–75.
19. Sola-Carvajal A, Garcia-Garcia MI, Garcia-Carmona F, Sanchez-Ferrer A. Insights into the evolution of sorbitol metabolism: phylogenetic analysis of SDR196C family. BMC Evol Biol. 2012;12:147.
20. Nosarzewski M, Downie AB, Wu BH, Archbold DD. The role of SORBITOL DEHYDROGENASE in Arabidopsis thaliana. Funct Plant Biol. 2012;39(6):462–70.
21. Almaghamsi A, Nosarzewski M, Kanayama Y, Archbold DD. Effects of abiotic stresses on sorbitol biosynthesis and metabolism in tomato (Solanum lycopersicum). Funct Plant Biol. 2021;48(3):286–97.
22. Shi XP, Ren JJ, Yu Q, Zhou SM, Ren QP, Kong LJ, et al. Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis. Plant Biol. 2018;20(2):327–37.
23. Li F, Lei HJ, Zhao XJ, Tian RR, Li TH. Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Mol Biol Report. 2012;30(1):123–30.
24. Gu C, Wu RF, Yu CY, Qi KJ, Wu C, Zhang HP, et al. Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit. Plant Sci. 2021;303:110787.
25. Yu CY, Cheng HY, Cheng R, Qi KJ, Gu C, Zhang SL. Expression analysis of sorbitol transporters in pear tissues reveals that PbSOT6/20 is associated with sorbitol accumulation in pear fruits. Sci Hortic. 2019;243:595–601.
26. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet. 2010;42(10):833–9.
27. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. The genome of the
pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396–408.
28. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. The highquality draft genome of peach (Prunus persica) identifies unique patterns
of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45(5):487–94.
29. Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol. 2003;18(6):292–8.
30. Li C, Li M, Dunwell JM, Zhang YM. Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots. BMC Evol Biol. 2012;12:15.
31. Li C, Li QG, Dunwell JM, Zhang YM. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol. 2012;29(10):3227–36.
32. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6.
33. Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005;39:309–38.
34. Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics. 2010;26(12):1481–7.
35. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
36. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39(Database issue):D225–9.
37. Loytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320(5883):1632–5.
38. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–5.
39. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
40. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20.
41. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
42. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–82.
43. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457–72.
44. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26(12):1569–71.
45. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061–7.
46. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
47. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8(1):77–80.
48. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
49. Guindon S, Rodrigo AG, Dyer KA, Huelsenbeck JP. Modeling the sitespecific variation of selection patterns along lineages. P Natl Acad Sci USA. 2004;101(35):12957–62.
50. Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19(6):908–17.
51. Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87(1):23–9.
52. Novembre JA. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol. 2002;19(8):1390–4.
53. Hershberg R, Petrov DA. General rules for optimal codon choice. Plos Genet. 2009;5(7):e1000556.
54. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
55. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.
56. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. The genome of Prunus mume. Nat Commun. 2012;3:1318.
57. Singh ND, Larracuente AM, Clark AG. Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol Biol Evol. 2008;25(2):454–67.
58. Singh ND, Koerich LB, Carvalho AB, Clark AG. Positive and purifying selection on the Drosophila Y chromosome. Mol Biol Evol. 2014;31(10):2612–23.
59. Jia Y, Wong DC, Sweetman C, Bruning JB, Ford CM. New insights into the evolutionary history of plant sorbitol dehydrogenase. BMC Plant Biol. 2015;15:101.
60. Li JM, Zheng DM, Li LT, Qiao X, Wei SW, Bai B, et al. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant Cell Physiol. 2015;56(9):1721–37.
61. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Web Server issue):W5–9.
62. Echave J, Spielman SJ, Wilke CO. Causes of evolutionary rate variation among protein sites. Nat Rev Genet. 2016;17(2):109–21.
63. Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet. 2011;13(2):85–96.
64. Jacobsen MW, da Fonseca RR, Bernatchez L, Hansen MM. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phylogenet Evol.
2016;95:161–70.
65. Camiolo S, Melito S, Porceddu A. New insights into the interplay between codon bias determinants in plants. DNA Res. 2015;22(6):461–70.
66. Wang L, Roossinck MJ. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Mol Biol. 2006;61(4–5):699–710.
67. Quax TE, Claassens NJ, Soll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell. 2015;59(2):149–61.