1. Walter M, Stevenson OD, Amponsah NT, Scheper RWA, Rainham DG, Hornblow CG, et al. Control of Neonectria Ditissima with copper based products in New Zealand. NZPP. 2015;68:241–9.
2. Walter M, Glaister MK, Clarke NR, von Lutz HV, Eld Z, Amponsah NT, et al. Are shelter belts potential inoculum sources for Neonectria ditissima apple tree infections? N Z Plant Prot. 2015;240:227–40.
3. Weber RWS. Biology and control of the apple canker fungus Neonectria Ditissima (Syn. N. Galligena) from a Northwestern European perspective. Erwerbs-Obstbau. 2014;56:95–107.
4. Beresford RM, Kim KS. Identification of regional climatic conditions favorable for development of European canker of apple. Phytopathology. 2011;101:135–46.
5. Ghasemkhani M. Resistance against fruit tree canker in apple, vol. 77. Sueciae: Doctoral thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden / Acta Universitas Agriculturae; 2015. p. 64.
6. Walter M, Campbell RE, Amponsah NT, Scheper RWA, Butler RC. Evaluation of biological and agrichemical products for control of Neonectria Ditissima conidia production. NZPP. 2017;70:87–96.
7. Gómez-Cortecero A, Saville RJ, Scheper RWA, Bowen JK, Agripino De Medeiros H, Kingsnorth J, et al. Variation in host and pathogen in the Neonectria/Malus interaction; toward an understanding of the genetic basis of resistance to European canker. Front Plant Sci. 2016;7:1365.
8. van de Weg WE. Screening for resistance to Nectria Galligena Bres. In cut shoots of apple. Euphytica. 1989;42:233–40.
9. Garkava-Gustavsson L, Zborowska A, Sehic J, Rur M, Nybom H, Englund JE, et al. Screening of apple cultivars for resistance to European canker, Neonectria Ditissima. Acta Hortic. 2013:529–36. https:// www. journ al. nzpps. org/ index. php/ nzpp/ artic le/ view/ 137.
10. van de Weg E. Breeding for resistance to Nectria Galligena; differences in resistance between seedling populations. Integrated control of pome fruit diseases. IOBC Bull. 1989;12(6):137–45.
11. Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, et al. Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes. 2010;6:477–87.
12. Bus VGM, Scheper RWA, Walter M, Campbell RE, Kitson B, Turner L, et al. Genetic Mapping of the European Canker (Neonectria Ditissima) Resistance Locus Rnd1 from Malus ‘Robusta 5.’. Tree Genet Genomes. 2019;15:25.
13. Chang L, Guo Z, Mu P. Genetic mapping and QTL analysis associated with fusarium head blight resistance at different developmental stages in wheat (Triticum Aestivum L) using recombinant inbred lines. Pak J Bot. 2018;50:2215–21.
14. Li J, Lindqvist-Kreuze H, Tian Z, Liu J, Song B, Landeo J, et al. Conditional QTL underlying resistance to late blight in a diploid potato population. Theor Appl Genet. 2012;124:1339–50.
15. Li YB, Wu CJ, Jiang GH, Wang LQ, He YQ. Dynamic analyses of Rice blast resistance for the assessment of genetic and environmental effects. Plant Breed. 2007;126:541–7.
16. Welz HG, Schechert AW, Geiger HH. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet. 1999;98:1036–45.
17. Mohler V, Stadlmeier M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum Aestivum L.). J Appl Genet. 2019;60:291–300.
18. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, et al. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. 2014;127:1073–90.
19. Bannier HJ. Moderne Apfelzüchtung: Genetische Verarmung Und Tendenzen Zur Inzucht. Erwerbs-Obstbau. 2011;52:85–110.
20. Amponsah NT, Scheper RWA, Fisher BM, Walter M, Smits JM, Jesson LK. The effect of wood age on infection by Neonectria ditissima through artificial wounds on different apple cultivars. N Z Plant Prot. 2017;70:97–105.
21. Wenneker M, de Jong PF, Joosten NN, Goedhart PW, Thomma BPHJ. Development of a method for detection of latent European fruit tree canker (Neonectria Ditissima) infections in apple and pear nurseries. Eur J Plant Pathol. 2017;148:631–5.
22. Tan Y, Shen F, Chen R, Wang Y, Wu T, Li T, et al. Candidate genes associated with resistance to Valsa canker identified via quantitative trait loci in apple. J Phytopathol. 2017;165:848–57.
23. Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen J-G, Muchero W. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front Plant Sci. 2018;9:1427.
24. Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WGT, Piro G, et al. Three pectin Methylesterase inhibitors protect Cell Wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol. 2017;173:1844–63.
25. Lee M-H, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee H-J, et al. Ligninbased barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 2019;38:e101948.
26. Yan Q, Si J, Cui X, Peng H, Chen X, Xing H, et al. The soybean Cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regul. 2019;88:139–49.
27. Würschum T. Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet. 2012;125:201–10.
28. Garkava-Gustavsson L, Ghasemkhani M, Zborowska A, Englund JE, Lateur M, van de Weg E. Approaches for evaluation of resistance to European canker (Neonectria Ditissima ) in apple. Acta Hortic. 2016:75–82.
29. Scheper RWA, Fisher BM, Taylor T, Hedderley DI. Detached shoot treatments cannot replace whole-tree assays when phenotyping for apple resistance to Neonectria Ditissima. New Zealand Plant Protection. 2018;71:151–7.
30. Wenneker M, Goedhart PW, van der Steeg P, van de Weg E, Schouten HJ. Methods for the quantification of resistance of apple genotypes to European fruit tree canker caused by Neonectria ditissima. Plant Dis. 2017;101(12):2012–9.
31. Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, Lipska M, et al. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. J Exp Bot. 2016;67:1871–81.
32. Kenis K, Keulemans J. Study of tree architecture of apple (Malus × Domestica Borkh.) by QTL analysis of growth traits. Mol Breed. 2007;19:193–208.
33. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de Los Campos G, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 2017;22:961–75.
34. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of Total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
35. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M. Evaluation of genomic prediction methods for fusarium head blight resistance in wheat. Plant Genome. 2012;5:51–61.
36. Lee J, Kim JM, Garrick DJ. Increasing the accuracy of genomic prediction in pure-bred Limousin beef cattle by including cross-bred Limousin data and accounting for an F94L variant in MSTN. Anim Genet. 2019;50:621–33.
37. Walter M, Roy S, Fisher BM, Mackle L, Amponsah NT, Curnow T, et al. How many conidia are required for wound infection of apple plants by Neonectria ditissima. NZPP. 2016;69:238–45.
38. de Mendiburu F, Yaseen M. Agricolae: statistical procedures for agricultural research. 2021. https:// CRAN.R-proje ct. org/ packa ge= agric olae. Accessed 1 Dec 2021.
39. Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PHC. Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spat Stat. 2018;23:52–71.
40. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using Lme4. J Stat Softw. 2015;67:1–48.
41. Lamour K, Finley L. A strategy for recovering high quality genomic DNA from a large number of Phytophthora isolates. Mycologia. 2006;98:514–7.
42. Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, et al. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping Array for apple (Malus × Domestica Borkh). Plos One. 014;9:e110377.
43. Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, et al. An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic Res. 2018;5:11.
44. Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink MCAM, et al. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. Plos One. 2019;14:e0210928.
45. Bink M, Uimari P, Sillanpää J, Janss G, Jansen C. Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet. 2002;104:751–62.
46. Bink MCAM, Totir LR, ter Braak CJF, Winkler CR, Boer MP, Smith OS. QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet. 2012;124:1097–113.
47. Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE. Bayesian analysis of complex traits in pedigreed plant populations. Euphytica. 2008;161:85–96
48. Allard A, Bink MCAM, Martinez S, Kelner J-J, Legave J-M, di Guardo M, et al. Detecting QTLs and putative candidate genes involved in Budbreak and flowering time in an apple multiparental population. J Exp Bot. 2016;67:2875–88.
49. Endelman JB. Ridge regression and other kernels for genomic selection with R package RrBLUP. Plant Genome J. 2011;4:250.