Options for the generation of seedless cherry, the ultimate snacking productVignati, E., Lipska, M., Dunwell, J. M. ORCID: https://orcid.org/0000-0003-2147-665X, Caccamo, M. ORCID: https://orcid.org/0000-0002-6244-3048 and Simkin, A. J. ORCID: https://orcid.org/0000-0001-5056-1306 (2022) Options for the generation of seedless cherry, the ultimate snacking product. Planta, 256 (5). 90. ISSN 1432-2048
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/s00425-022-04005-y Abstract/SummaryCherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat ‘on the move’ and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an ‘ultimate snacking product’ for the twenty-first century.
DownloadsDownloads per month over past year
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS (2018)
New breeding technique “genome editing” for crop improvement: applications, potentials and challenges. 3 Biotech
8(8):336. https://doi.org/10.1007/s13205-018-1355-3
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857. https://doi.org/10.1105/tpc.9.6.841
Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT
MERISTEMLESS genes. Development 126(8):1563–1570
Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation
of the apical region of the Arabidopsis embryo. Development
129(17):3965–3974
Alba CM-A, Daya M, Franck C (2019) Tart Cherries and health: current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract. Crit Rev Food Sci Nutr 59(4):626–638. https://doi.org/10.1080/10408398.2017.1384918
Alotaibi SS, Sparks CA, Parry MAJ, Simkin AJ, Raines CA (2018) Identifcation of leaf promoters for use in transgenic wheat. Plants 7(2):27. https://doi.org/10.3390/plants7020027
Alotaibi SS, Alyassi H, Alshehawi A, Gaber A, Hassan MM, Aljuaid BS, Simkin AJ, Raines CA (2019) Functional analysis of SBPase gene promoter in transgenic wheat under diferent
growth conditions. Biotechnology 1:15–23
Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao
JL (2002) Down-regulation of TM29, a tomato SEPALLATA
homolog, causes parthenocarpic fruit development and foral
reversion. Plant Physiol 130(2):605–617. https://doi.org/10.
1104/pp.005223
An J, Althiab Almasaud R, Bouzayen M, Zouine M, Chervin C
(2020) Auxin and ethylene regulation of fruit set. Plant Sci
292:110381. https://doi.org/10.1016/j.plantsci.2019.110381
Ariizumi T, Ezura H, Harada K, Shinozaki Y, Yano R, Riku U (2021) Fruit-bearing plant exhibiting high temperature resistance, high yield, and parthenocarpy. Patent WO 2021/040011 A1
Barg R, Salts Y, Klap C, Arazi I, Yeshayahou E, Bolger A, Shabtai S (2021) Parthenocarpic plants and methods of producing same. Patent US 2021/0037779 A1
Bell PG, McHugh MP, Stevenson E, Howatson G (2014) The role
of cherries in exercise and health. Scand J Med Sci Sports
24(3):477–490. https://doi.org/10.1111/sms.12085
Benjamins R, Quint A, Weijers D, Hooykaas P, Ofringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128(20):4057–4067
Bennett SR, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J
8(4):505–520 Berleth T, Jurgens G (1993) The role of the MONOPTEROS gene in organising the basal body region of the Arabidopsis embryo. Development 118(2):575–587
Bhagwat B, Lane WD (2004) In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart. Plant Cell Tissue Organ Cult 78(2):173–178
Blando F, Chiriaco L, Gerardi C, Lucchesini M, Rampino P (2007) Sweet cherry (Prunus avium L.) “Giorgia”, adventitious regeneration from leaves of microplants. Eur J Hortic Sci 72:138–143
Blanpied GD (1972) A study of ethylene in apple, red raspberry, and cherry. Plant Physiol 49(4):627–630. https://doi.org/10.1104/pp.49.4.627
Blanusa T, Else MA, Atkinson CJ, Davies WJ (2005) The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regul 45(3):189–198. https://doi.org/10.1007/s10725-005-3568-9
Bouzayen M, Zouine M, Pech J-C, Latche A (2013) New parthenocarpic plants with modifed expression of auxin response factors and the micrornas inducing said modifed expression. Patent WO 2013/034722 A1
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19(8):2544–2556. https://doi.org/10.1105/tpc.107.051797
Callahan AM, Dardick C, Scorza R (2009) Characterization of ‘Stoneless’: a naturally occurring, partially stoneless plum cultivar. J Am Soc Hortic Sci 134(1):120–125
Callahan A, Dardick C, Tosetti R, Lalli D, Scorza R (2015) 21st century approach to improving Burbank’s ‘Stoneless’ plum. J Am Soc Hortic Sci 50(2):195–200
Canli FA, Tian L (2008) In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.) cultivars. Sci Hortic 116(1):34–40. https://doi.org/10.1016/j.scienta.2007.10.023
Carrera E, Ruiz-Rivero O, Peres LE, Atares A, Garcia-Martinez JL (2012) Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of fower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160(3):1581–1596. https://doi.org/10.1104/pp.112.204552
Chen X, Zhang M, Tan J, Huang S, Wang C, Zhang H, Tan T (2017) Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.). Plos one 12(6):e0179491. https://doi.org/10.1371/journal.pone.0179491
Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA
favin monooxygenases is essential for embryogenesis and leaf
formation in Arabidopsis. Plant Cell 19(8):2430–2439. https://doi.org/10.1105/tpc.107.053009
Clif MA, Dever MC, Hall JW, Giraud B (1996) Development and
evaluation of multiple regression models for predicting sweet cherry liking. Food Res Int 28(6):583–589
Coelho Rabello Lima L, Oliveira Assumpção C, Prestes J, Sérgio Denadai B (2015) Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and infamation in humans. Nutr Hosp 32(5):1885–1893. https://doi.org/10.3305/nh.2015.32.5.9709
Cong L, Yue R, Wang H, Liu J, Zhai R, Yang J, Wu M, Si M, Zhang H, Yang C, Xu L, Wang Z (2019) 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis. Physiol Plant 166(3):812–820. https://doi.org/10.1111/ppl.12835
Crane JC, Primer PE, Campbell RC (1960) Gibberellin induced parthenocarpy in Prunus. Proc Am Soc Hortic Sci 75:129–137
Crawford BCW, Poorten TJ (2020) Methods of producing plants with altered fruit development and plants derived therefrom. Patent WO 2020/252167 A1
Crisosto CH, Crisosto GM, Metheney P (2003) Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol Technol 28(1):159–167. https://doi.org/10.1016/S0925-5214(02)00173-4
Cubero J, Toribio F, Garrido M, Hernández MT, Maynar J, Barriga C, Rodríguez AB (2010) Assays of the amino acid tryptophan in cherries by HPLC-fuorescence. Food Anal Methods 3(1):36–39.https://doi.org/10.1007/s12161-009-9084-1
Davis TD, Curry EA, Stefens GL (1991) Chemical regulation of vegetative growth. Crit Rev Plant Sci 10(2):151–188. https://doi.org/10.1080/07352689109382310
Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148(4):1964–1984. https://doi.org/10.1104/pp.108.128108
de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57(1):160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x
de Jong M, Wolters-Arts M, Garcia-Martinez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE
FACTOR 7 (SlARF7) mediates cross-talk between auxin and
gibberellin signalling during tomato fruit set and development. J Exp Bot 62(2):617–626. https://doi.org/10.1093/jxb/erq293
Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445. https://doi.org/10.1038/nature03543
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119. https://doi.org/10.1016/j.devcel.2005.05.014
Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 8(7):e70080. https://doi.org/10.1371/journal.pone.0070080
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in foral organ and meristem identity. Curr Biol 14(21):1935–1940. https://doi.org/10.1016/j.cub.2004.10.028
Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez-Amador MA
(2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58(2):318–332. https://doi.org/10.1111/j.1365-313X.2008.03781.x
Du M, Luo M, Zhang R, Finnegan EJ, Koltunow AM (2014) Imprinting in rice: the role of DNA and histone methylation in modulating parent-of-origin specifc expression and determining transcript start sites. Plant J 79(2):232–242. https://doi.org/10.1111/tpj.12553
Du L, Bao C, Hu T, Zhu Q, Hu H, He Q, Mao W (2016) SmARF8,
a transcription factor involved in parthenocarpy in eggplant. Mol Genet Genom 291(1):93–105. https://doi.org/10.1007/s00438-015-1088-5
Edgerton LJ, Hatch AH (1969) Promoting abscission of cherries and apples for mechanical harvesting. Proc N Y State Hortic Soc 114:109–113
Eeraerts M, Smagghe G, Meeus I (2019) Pollinator diversity, foral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry. Agr Ecosyst Environ 284:106586. https://doi.org/10.1016/j.agee.2019.106586
Eeraerts M, Borremans L, Smagghe G, Meeus I (2020) A growers’ perspective on crop pollination and measures to manage the pollination service of wild pollinators in sweet cherry cultivation. Insects 11(6):372
Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647
Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shufing: a one-pot DNA shufing method based on type IIs restriction enzymes. PLoS One 4(5):e5553. https://doi.org/10.1371/journal.pone.0005553
Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843. https://doi.org/10.1021/sb4001504
Exposito-Rodriguez M, Laissue PP, Lopez-Calcagno PE, Mullineaux PM, Raines CA, Simkin AJ (2017) Development of pGEMINI, a plant gateway destination vector allowing the simultaneous integration of two cDNA via a single LR-clonase reaction. Plants
(basel) 6(4):55. https://doi.org/10.3390/plants6040055
Ezquer I, Mizzotti C, Nguema-Ona E, Gotté M, Beauzamy L, Viana VE, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney AS, Boudaoud A, Driouich A, Colombo L (2016) The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell 28(10):2478–2492. https://doi.org/10.1105/tpc.16.00454
Fabian T, Lorbiecke R, Umeda M, Sauter M (2000) The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta 211(3):376–383. https://doi.org/10. 1007/s004250000295
Faust M, Surányi D (1997) Origin and dissemination of cherry. Hortic Rev 19:263–317
Feeney M, Bhagwat B, Mitchell JS, Lane WD (2007) Shoot regeneration from organogenic callus of sweet cherry (Prunus avium L.). Plant Cell Tissue Organ Cult 90(2):201–214
Fernandez L, Chaïb J, Martinez-Zapater JM, Thomas MR, Torregrosa L (2013) Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J 73(6):918–928. https://doi.org/10.1111/tpj.12083
Ferretti G, Bacchetti T, Belleggia A, Neri D (2010) Cherry antioxidants: from farm to table. Molecules 15(10):6993–7005. https://doi.org/10.3390/molecules15106993
Figueiredo DD, Köhler C (2016) Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. Curr Opin Plant Biol 29:16–20. https://doi.org/10.1016/j.pbi.2015.10.008
Figueiredo DD, Köhler C (2018) Auxin: a molecular trigger of seed development. Genes Dev 32(7–8):479–490. https://doi.org/10.1101/gad.312546.118
Figueiredo DD, Batista RA, Roszak PJ, Köhler C (2015) Auxin production couples endosperm development to fertilization. Nature Plants 1:15184. https://doi.org/10.1038/nplants.2015.184
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ,
Palme K, Ofringa R (2004) A PINOID-dependent binary switch
in apical-basal PIN polar targeting directs auxin efux. Science 306(5697):862–865. https://doi.org/10.1126/science.1100618
Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L (2012) Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24(10):3982–3996. https://doi.org/10.1105/tpc.112.103192
Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131(20):5021–5030. https://doi.org/10.1242/dev.01388
Galimba KD, Bullock DG, Dardick C, Liu Z, Callahan AM (2019) Gibberellic acid induced parthenocarpic ‘Honeycrisp’ apples (Malus domestica) exhibit reduced ovary width and lower acidity. Hortic Res 6:41. https://doi.org/10.1038/s41438-019-0124-8
Galimba K, Tosetti R, Loerich K, Michael L, Pabhakar S, Dove C, Dardick C, Callahan A (2020) Identifcation of early fruit development reference genes in plum. PLoS One 15(4):e0230920. https://doi.org/10.1371/journal.pone.0230920
Ganopoulou M, Michailidis M, Angelis L, Ganopoulos I, Molassiotis A, Xanthopoulou A, Moysiadis T (2022) Could causal discovery in proteogenomics assist in understanding gene-protein relations? A perennial fruit tree case study using sweet cherry as a model. Cells 11(1):92
García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot
63(16):5803–5813. https://doi.org/10.1093/jxb/ers229
Garrido M, Espino J, Toribio-Delgado AF, Cubero J, Maynar-Mariño JI, Barriga C, Paredes SD, Rodríguez AB (2012) A jerte valley cherry-based product as a supply of tryptophan. Int J Tryptophan Res 5:IJTR.S 9394. https://doi.org/10.4137/ijtr.S9394
Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops and Food 8(1):1–12. https://doi.org/10.1080/21645698.2016.1270489
Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5(10):1439–1451. https://doi.org/10.1105/tpc.5.10.1439
Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18(8):1873–1886. https://doi.org/10.1105/tpc.105.037192
Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN
RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145(2):351–366. https://doi.org/
10.1104/pp.107.104174
Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7(2):131–139. https://doi.org/10.1055/s-2005-837494
Goto K, Meyerowitz EM (1994) Function and regulation of the
Arabidopsis floral homeotic gene PISTILLATA. Genes Dev
8(13):1548–1560
Gou C, Zhu P, Meng Y, Yang F, Xu Y, Xia P, Chen J, Li J (2022) Evaluation and genetic analysis of parthenocarpic germplasms in cucumber. Genes 13(2):225
Groot SP, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellin in seed and fruit development of tomato: studies with a gibberellin-defcient mutant. Physiol Plant 71(2):184–190
Guinn G, Brummett DL (1987) Concentrations of abscisic acid and indoleacetic acid in cotton fruits and their abscission zones in relation to fruit retention. Plant Physiol 83(1):199–202. https://doi.org/10.1104/pp.83.1.199
Gustafson FG (1939) Auxin distribution in fruits and its signifcance in fruit development. Am J Bot 26(4):189–194
Gustafson FG (1942) Parthenocarpy: natural and artifcial. Bot Rev 8(9):599–654
Guyer DE, Sinha NK, Chang TS, Cash JN (1993) Physiochemical and sensory characteristics of selected Michigan sweet cherry (Prunus avium L.) cultivars. J Food Qual 16(5):355–370
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes
mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131(3):657–668. https://doi.org/10.1242/dev.00963
Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS
encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17(5):1405–1411. https://doi.org/10.1093/emboj/17.5.1405
Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131(5):1089–1100. https://doi.org/10.1242/dev.00925
Hatorangan MR, Laenen B, Steige KA, Slotte T, Köhler C (2016) Rapid evolution of genomic Imprinting in two species of the Brassicaceae. Plant Cell 28(8):1815–1827. https://doi.org/10.1105/tpc.16.00304
Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27(4):743–752. https://doi.org/10.1007/bf00020227
Heuvelink E, Körner O (2001) Parthenocarpic fruit growth reduces yield fuctuation and blossom-end rot in sweet pepper. Ann Bot 88(1):69–74. https://doi.org/10.1006/anbo.2001.1427
Hu J, Israeli A, Ori N, Sun T-p (2018) The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell 30(8):1710–1728. https://doi.org/10.1105/tpc.18.00363
Huang B, Hu G, Wang K, Frasse P, Maza E, Djari A, Deng W, Pirrello J, Burlat V, Pons C, Granell A, Li Z, van der Rest B, Bouzayen M (2021) Interaction of two MADS-box genes leads to growth phenotype divergence of all-fesh type of tomatoes. Nat Commun 12(1):6892. https://doi.org/10.1038/s41467-021-27117-7
Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087. https://doi.org/10.1105/tpc.106.045674
Ingram GC (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247(3–4):195–214. https://doi.org/10.1007/s00709-010-0184-y
Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene
APETALA3 of Arabidopsis thaliana encodes a MADS box and
is expressed in petals and stamens. Cell 68(4):683–697. https://doi.org/10.1016/0092-8674(92)90144-2
Jennings DL (1971) Some genetic factors afecting the development of endocarp, endosperm and embryo in raspberries. New Phytol 70(5):885–895
Jennings DL, Craig DL, Topham PB (1967) The role of the male parent in the reproduction of Rubus. Heredity 22(1):43–55
Joldersma D, Liu Z (2018) The making of virgin fruit: the molecular and genetic basis of parthenocarpy. J Exp Bot 69(5):955–962.
https://doi.org/10.1093/jxb/erx446
Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25(6):1960–1978. https://doi.org/10.1105/tpc.113.111732
Kappel F, Fisher-Fleming B, Hogue E (1996) Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience 31(3):443–446. https://doi.org/10.21273/hortsci.31.3.443
Kelley DS, Adkins Y, Laugero KD (2018) A review of the health benefts of cherries. Nutrients 10(3):368. https://doi.org/10.3390/nu10030368
Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451. https://doi.org/10.1038/nature03542
Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic 52(1):1–8. https://doi.org/10.1016/0304-4238(92)90002-T
Kim J-S, Ezura K, Lee J, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H (2020) The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. J Plant Physiol 252:153238. https://doi.org/10.1016/j.jplph.2020.153238
Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15(5):634–647. https://doi.org/10.1111/pbi.12662
Klosinska M, Picard CL, Gehring M (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nature Plants 2:16145. https://doi.org/10.1038/nplants.2016.145
Kuntz M, Chen HC, Simkin AJ, Römer S, Shipton CA, Drake R,
Schuch W, Bramley PM (1998) Upregulation of two ripening-related genes from a non-climacteric plant (pepper) in a transgenic climacteric plant (tomato). Plant J 13(3):351–361. https://doi.org/10.1046/j.1365-313X.1998.00032.x
Liu L, Wang Z, Liu J, Liu F, Zhai R, Zhu C, Wang H, Ma F, Xu
L (2018) Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Horticul Res 5:1. https://doi.org/10.1038/s41438-017-0012-z
Livne S, Lor VS, Nir I, Eliaz N, Aharoni A, Olszewski NE, Eshed Y, Weiss D (2015) Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell 27(6):1579–1594. https://doi.org/10.1105/tpc.114.132795
Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7(6):e1002125. https://doi.org/10.1371/journal. pgen.1002125
Lyngstad L, Sekse L (1995) Economic aspects of developing a high sweet cherry product in Norway. Acta Hortic 379(39):313–320
Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in
plants. J Exp Bot 63(8):2853–2872. https://doi.org/10.1093/jxb/ers091
Marillonnet S, Werner S (2015) Assembly of multigene constructs using golden gate cloning. In: Castilho A (ed) Glyco-engineering: methods and protocols. Springer, New York, pp 269–284. https://doi.org/10.1007/978-1-4939-2760-9_19
Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52(5):865–876. https://doi.org/10.1111/j.1365-313X.2007.03282.x
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108(45):18512–18517. https://doi.org/10.1073/pnas.1108434108
Matt A, Jehle JA (2005) In vitro plant regeneration from leaves and internode sections of sweet cherry cultivars (Prunus avium L.). Plant Cell Rep 24(8):468–476. https://doi.org/10.1007/s00299-005-0964-6
McCune LM, Kubota C, Stendell-Hollis NR, Thomson CA (2011)
Cherries and health: a review. Crit Rev Food Sci Nutr 51(1):1–12. https://doi.org/10.1080/10408390903001719
Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, de los Ángeles
Miccono M, Ramos R, Le Cunf L, Boursiquot J-M, Hinrichsen
P, Adam-Blondon A-F (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11(1):57. https://doi.org/10.1186/1471-2229-11-57
Mesejo C, Yuste R, Reig C, Martínez-Fuentes A, Iglesias DJ, MuñozFambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24. https://doi.org/10.1016/j.plantsci.2016.02.018
Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A,
Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab
R, Weigel D, Meyerowitz EM, Luschnig C, Ofringa R, Friml J
(2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin fux. Cell 130(6):1044–1056. https://doi.org/10.1016/j.cell.2007.07.033
Mignolli F, Vidoz ML, Mariotti L, Lombardi L, Picciarelli P (2014) Induction of gibberellin 20-oxidases and repression of gibberellin 22-oxidases in unfertilized ovaries of entire tomato mutant, leads to accumulation of active gibberellins and parthenocarpic fruit formation. Plant Growth Regul 75:415–425
Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, Colombo L (2012) The MADS box genes SEEDSTICK
and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70(3):409–420. https://doi.org/10.1111/j.1365-313X.2011.04878.x
Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L (2014) SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 10(12):e1004856. https://doi.org/10.1371/journal.pgen.1004856
Molesini B, Pandolfni T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol 149(1):534–548. https://doi.org/10.1104/pp.108.131367
Molesini B, Dusi V, Pennisi F, Pandolfni T (2020) How hormones and MADS-Box transcription factors are involved in controlling fruit set and parthenocarpy in tomato. Genes (basel) 11(12):1441. https://doi.org/10.3390/genes11121441
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell
A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M (2012)
Down-regulation of a single auxin efflux transport protein
in tomato induces precocious fruit development. J Exp Bot
63(13):4901–4917. https://doi.org/10.1093/jxb/ers167
Mukherjee S, Stasolla C, Brule-Babel A, Ayele BT (2015) Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.). Plant Signal Behav 10(2):e989033. https://doi.org/10.4161/15592324.2014.989033
Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 2007(407):cm5. https://doi.org/10.1126/stke.4072007cm5
Ocarez N, Mejía N (2016) Suppression of the D-class MADS-box
AGL11 gene triggers seedlessness in feshy fruits. Plant Cell
Rep 35(1):239–254. https://doi.org/10.1007/s00299-015-1882-x
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106(52):22540–22545. https://doi.org/10.1073/pnas.0911967106
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C foral organ identity functions require SEPALLATA MADS box genes. Nature 405(6783):200–203. https://doi.org/10.1038/35012103
Picarella ME, Mazzucato A (2019) The occurrence of seedlessness in higher plants; Insights on roles and mechanisms of parthenocarpy. Front Plant Sci 9:1997. https://doi.org/10.3389/fpls.2018.01997
Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochem Biophys Acta 1769(5–6):375–382. https://doi.org/10.1016/j.bbaexp.2007.01.010
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of
MADS-box genes during carpel and ovule development. Nature
424(6944):85–88. https://doi.org/10.1038/nature01741
Pollack S (2001) Consumer demand for fruits and vegetables: The U.S. example. Changing structure of global food consumption and trade. Economic Research Service Publication WR-S-01-1. U.S. Department of Agriculture, Washington, DC
Pratt C (1988) Apple fower and fruit: morphology and anatomy. Hortic Rev 10:273–308
Riefer M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis
cytokinin receptor mutants reveal functions in shoot growth,
leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18(1):40–54. https://doi.org/10.1105/tpc.105.037796
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23(24):2506–2512. https://doi.org/10.1016/j.cub.2013.09.039
Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015) Plant embryogenesis requires AUX/LAX-mediated auxin infux. Development 142(4):702–711. https://doi.org/10.1242/dev.115832
Rojas-Gracia P, Roque E, Medina M, Rochina M, Hamza R, AngaritaDíaz MP, Moreno V, Pérez-Martín F, Lozano R, Cañas L, Beltrán JP, Gómez-Mena C (2017) The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytol 214(3):1198–1212. https://doi.org/10.1111/nph.14433
Roszak P, Köhler C (2011) Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc Natl Acad Sci 108(51):20826–20831. https://doi.org/10.1073/pnas.1117111108
Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates fowering and seed development. Plant Cell Physiol 48(3):471–483. https://doi.org/10.1093/pcp/pcm016
Royo C, Torres-Pérez R, Mauri N, Diestro N, Cabezas JA, Marchal C, Lacombe T, Ibáñez J, Tornel M, Carreño J, Martínez-Zapater JM, Carbonell-Bejerano P (2018) The major origin of seedless grapes Is associated with a missense mutation in the MADS-Box gene VviAGL11. Plant Physiol 177(3):1234–1253. https://doi.org/10.1104/pp.18.00259
Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, Schreiber T, Marillonnet S, Okabe Y, Ezura H, Acosta IF, Tarkowska D, Hause B (2019) Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. Plant Cell 31(5):1043–1062. https://doi.org/10.1105/tpc.18.00978
Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specifc oxidative cleavage of carotenoids by VP14 of maize. Science 276(5320):1872–1874. https://doi.org/10.1126/science. 276.5320.1872
Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JA (2003)
Substrate specifcity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochem Biophys Acta 1619(1):9–14. https://doi.org/10.1016/s0304-4165(02) 00422-1
Sekse L, Lyngstad L (1996) Strategies for maintaining high quality in sweet cherries during harvesting, handling and marketing. Acta Hortic 410:351–355
Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxininduced fruit-set in tomato is mediated in part by gibberellins. Plant J 56(6):922–934. https://doi.org/10.1111/j.1365-313X.2008.03654.x
Sexton R, Lewis LN, Trewavas AJ, Kelly P (1985) Ethylene and abscission. In: Roberts JA, T GA (eds) Ethylene and plant development. Butterworths, London, UK, pp 173–196
Sharif R, Su L, Chen X, Qi X (2022) Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic Res.https://doi.org/10.1093/hr/uhab024
Simkin AJ (2019) Genetic engineering for global food security: photosynthesis and biofortifcation. Plants 8(12):586
Simkin AJ (2021) Carotenoids and apocarotenoids in planta: Their role in plant development, contribution to the favour and aroma of fruits and fowers, and their nutraceutical benefts. Plants 10(11):2321
Simkin AJ, Qian T, Caillet V, Michoux F, Ben Amor M, Lin C,
Tanksley S, McCarthy J (2006) Oleosin gene family of Coffea canephora: quantitative expression analysis of fve oleosin genes in developing and germinating cofee grain. J Plant Physiol 163(7):691–708. https://doi.org/10.1016/j.jplph.2005.11.008
Simkin AJ, McCarthy J, Petiard V, Tanksley S, Lin C (2007) Oleosin genes and promoters from cofee. Patent WO 2007/005928 A2
Simmonds NW (1953) The development of the banana fruit. J Exp Bot 4(1):87–105. https://doi.org/10.1093/jxb/4.1.87
Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14(12):3133–3147. https://doi.org/10.1105/tpc.003046
Sjut V, Bangerth F (1982) Induced parthenocarpy—a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.) 1. Extractable hormones. Plant Growth Regul 1(4):243–251. https://doi.org/10.1007/BF00024718
Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous fowering. PLoS One 7(7):e40715. https://doi.org/10.1371/journal.pone.0040715
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY,
Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-
mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191. https://doi.org/10.1016/j.cell.2008.01.047
Sun Y, Wang C, Wang N, Jiang X, Mao H, Zhu C, Wen F, Wang X, Lu Z, Yue G, Xu Z, Ye J (2017) Manipulation of auxin response factor 19 afects seed size in the woody perennial Jatropha curcas. Sci Rep 7(1):40844. https://doi.org/10.1038/srep40844
Swain SM, Koltunow AM (2006) Auxin and fruit initiation plant Physiology. Sinauer Associates Inc, Sunderland, MA
Swain SM, Reid JB, Ross JJ (1993) Seed development in Pisum. Planta 191(4):482–488
Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required
for embryo growth and seed development in pea. Plant J
12(6):1329–1338
Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A (2018) The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 afecting fruit development in tomato (Solanum lycopersicum L.). BMC Plant Biol 18(1):72. https://doi.org/10.1186/s12870-018-1285-6
Talon M, Zacarias L, Primo-Millo E (1990) Hormonal changes associated with fruit set and development in mandarins difering in their parthenocarpic ability. Physiol Plant 79(2):400–406. https://doi.org/10.1111/j.1399-3054.1990.tb06759.x
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645. https://doi.org/10.1038/nature05731
Tanaka N, Wada W (2022) Apple MADS genes are involved in parthenocarpy and foral organ formation. Hortic J. https://doi.org/10.2503/hortj.UTD-R018
Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/
IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate diferential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16(2):379–393. https://doi.org/10.1105/tpc.018630
Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytol 151:323–340
Theißen G (2001) Development of foral organ identity: stories from the MADS house. Curr Opin Plant Biol 4(1):75–85. https://doi.org/10.1016/s1369-5266(00)00139-4
Theißen G, Saedler H (2001) Floral quartets. Nature. Communications 409(6819):469–471
Tukey HB (1933) Embryo abortion in early ripening varieties of Prunus avium. Bot Gaz 94(3):433–468
Tukey HB (1934) Growth of the embryo, seed, and pericarp of the sour cherry (Prunus cerasus) in relation to season of fruit ripening. Proc Am Soc Hortic Sci 31:125–144
Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA
binding of auxin response factors. Plant J 19(3):309–319. https://doi.org/10.1046/j.1365-313x.1999.00538.x
Van Dun CMP, Lastdrager MB, Huijbregts-Doorduin LJ (2021)
Modifed gene resulting in parthenocarpic fruit set. Patent US 10941411:B2
Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18(6):233–242. https://doi.org/10.1016/s0167-7799(00)01448-7
Vergara R, Olivares F, Olmedo B, Toro C, Muñoz M, Zúñiga C, Mora R, Plantat P, Miccono M, Loyola R, Aguirre C, Prieto H (2021) Gene editing in Prunus Spp. The challenge of adapting regular gene transfer procedures for precision breeding. In: Küden AB, Küden A (eds) Prunus - Recent Advances. IntechOpen, London
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ (2022)
Fruit development in sweet cherry. Plants 11(12):1531. https://doi.org/10.3390/plants11121531
Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17(10):2676–2692. https://doi.org/10.1105/tpc.105.033415
Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang JG (2018)
Spatio-temporal expression of miRNA159 family members and
their GAMYB target gene during the modulation of gibberellin induced grapevine parthenocarpy. J Exp Bot 69(15):3639–3650. https://doi.org/10.1093/jxb/ery172
Wang H, Zhang H, Liang F, Cong L, Song L, Li X, Zhai R, Yang C, Wang Z, Ma F, Xu L (2021) PbEIL1 acts upstream of PbCysp1
to regulate ovule senescence in seedless pear. Hortic Res. https://doi.org/10.1038/s41438-021-00491-5
Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJ, Ofringa R (2003) Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol 133(4):1882–1892. https://doi.org/10.1104/pp.103.030692
Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specifcation in Arabidopsis embryogenesis. Dev Cell 10(2):265–270. https://doi.org/10.1016/j.devcel.2005.12.001
Wen B, Song W, Sun M, Chen M, Mu Q, Zhang X, Wu Q, Chen X,
Gao D, Wu H (2019) Identifcation and characterization of cherry (Cerasus pseudocerasus G. Don) genes responding to parthenocarpy induced by GA3 through transcriptome analysis. BMC Genet 20(1):65. https://doi.org/10.1186/s12863-019-0746-8
Wermund U, Fearne A (2000) Key challenges facing the cherry supply chain in the UK. Acta Hortic 536:613–624
Wilson F, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019) CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid Strawberry. BMC Plant Methods 15:45
Yao J-L, Dong Y-H, Morris BAM (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA
98(3):1306–1311. https://doi.org/10.1073/pnas.98.3.1306
Zhang J, Chen R, Xiao J, Qian C, Wang T, Li H, Ouyang B, Ye Z (2007) A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant. J Plant Res 120(6):671–678. https://doi.org/10.1007/s10265-007-0109-9
Zhao Y (2014) Auxin biosynthesis. Arabidopsis Book 12:e0173
Zheng X, Yue C, Gallardo K, McCracken V, Luby J, McFerson J (2016)
What attributes are consumers looking for in sweet cherries?
Evidence from choice experiments. Agric Resour Econ Rev
45(1):124–142. https://doi.org/10.1017/age.2016.13
Zong X, Denler BJ, Danial GH, Chang Y, Song G-Q (2019) Adventitious shoot regeneration and Agrobacterium tumefaciens-mediated transient transformation of almond × peach hybrid rootstock ‘Hansen 536.’ HortScience 54(5):936–940. https://doi.org/10.21273/hortsci13930-19 University Staff: Request a correction | Centaur Editors: Update this record |