1. Yameng, Y. et al. Research progress on classification of wild resources of Vitis. J. Plant Genet. Resour. 21, 275–286 (2020).
2. Elavarasan, K., Govindappa, M., Rajan, S., Harsha, S. & Manoharan, M. Contemporary improvements of post harvest quality in grapes. Adv. Res. J. Crop Improv. 5, 208–214 (2020).
3. Xinning, Y., Caiyun, L. & Ling, L. A brief talk on the varieties and growth habits of peach trees. Mod. Hortic. 006, 64–64 (2012).
4. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405(6788), 827–836 (2000).
5. Costa, V., Angelini, C., De Feis, I. & Ciccodicola, A. Uncovering the complexity of transcriptomes with RNA-Seq. J. Biomed. Biotechnol. 5757, 853–916 (2010).
6. Venturini, L. et al. De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genom. 14(1), 41 (2013).
7. Khalil-Ur-Rehman, M. et al. Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC Plant Biol. 17(1), 18–18 (2017).
8. Wang, W., Khalil-Ur-Rehman, M., Feng, J. & Tao, J. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. J. Plant Physiol. 218, 155–166 (2017).
9. Kanjana, W. et al. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch). BMC Genom. 17(1), 575 (2016).
10. Gu, C. et al. RNA-Seq analysis unveils gene regulation of fruit size cooperatively determined by velocity and duration of fruit swelling in peach. Physiol. Plant. 164(3), 320–336 (2018).
11. Cao, K. et al. Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach. Plant Physiol. Biochem. 123, 94–102 (2018).
12. Ye, J. et al. Identification of candidate genes involved in anthocyanin accumulation using Illumina-based RNA-seq in peach skin. Sci. Hortic. 250, 184–198 (2019).
13. Santner, A. & Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009).
14. Vanneste, S. & Friml, J. Auxin: A trigger for change in plant development. Cell 136, 1005–1016 (2009).
15. Woodward, A. W. & Bonnie, B. Auxin: Regulation, action, and interaction. Ann. Bot. 95(5), 707–735 (2005).
16. Knauss, S., Rohrmeier, T. & Lehle, L. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J. Biol. Chem. 278, 23936–23943 (2003).
17. Huazhao, Y. et al. Bioinformatics identification and expression analysis of grape auxin-responsive gene family. Genetic 037, 720–730
(2015).
18. Jie, L. I. & Han, J. C. The Research Progress of Fruit Aroma Substance Analysis. Northern Fruits (2018).
19. Su, J. et al. Research progress of sugar metabolism and content regulation in fruits. J. Fruit Sci. 39(2), 266–279 (2022).
20. Ye, J. et al. Research progress on sugar metabolism in peach fruit. Shanghai Agric. J. 25, 144–150 (2019).
21. Ambasht, P. K. & Kayastha, A. M. Plant pyruvate kinase. Biol. Plant. 45, 1–10 (2002).
22. Deng, J. H., Tan, X. H., Pan, X. H. & Wang, F. Research progress of glucocyanin. Pack Food Mach. 24, 26–32 (2006).
23. Moyer, R. A., Hummer, K. E., Finn, C., Frei, B. & Wrolstad, R. E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50, 519–525 (2002).
24. Yamasaki, H., Uefuji, H. & Sakihama, Y. Bleaching of the red anthocyanin induced by superoxide radical. Arch. Biochem. Biophys. 332, 183–186 (1996).
25. Xiangchun, M., Jianzong, P. & Xiaojing, W. The effect of light and sugar on the accumulation of gerbera chrysanthemum glycosides
and the expression of CHS and DFR genes. Acta Horticulturae Sinica. 34(1), 231–234 (2007).
26. Lei, Z. et al. Effect of chalcone synthase gene on anthocyanin metabolism of peach fruit. Acta Hortic. Sin. 42, 31–37 (2015).
27. Yun, J., Ma, R. J., Shen, Z. J., Yan, J. & Yu, M. L. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. J. Zhejiang Univ. 15, 809–819 (2014).
28. Long, Z. et al. Advances in anthocyanin biosynthesis and molecular regulation. Acta Hortic. Sin. 35, 909–916 (2008).
29. Hongyan, F., Xiaoying, Y. & Zhenni, L. Research progress of ornamental plant DFR gene. Tianjin Agric. Sci. 18, 14–19 (2012).
30. Carvalho, L. C. & Amncio, S. Cutting the gordian knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiol. Plant. 165, 330–342 (2018).
31. Daldoul, S., Boubakri, H., Gargouri, M. & Mliki, A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol. Biol. Rep. 47, 3141–3153 (2020).
32. Hayat, Q., Hayat, S., Irfan, M. & Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 68, 14–25 (2010).
33. Hui, W., Zhenbiao, D., Shimin, Z., Kai, J. & Fei, Y. Research progress on the effect of exogenous salicylic acid on plant antioxidant system under adversity conditions. Shandong Agric. Sci. 48, 154–158 (2016).
34. Raskin, I. Role of salicylic acid in plants. Annu. Rev. Plant Biol. 43, 439–463 (2003).
35. Yongqiang, Y., Jianbin, H. & Mingjun, D. Advances in research on plant leaf antioxidant system and its response to adversity stress. Chinese Agricultural Science Bulletin. 23(1),115–120 (2007).
36. Anderson, J. V. & Davis, D. G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant. 120, 421–433 (2010).
37. Wenjun, W., Gong, J., Lixin, Z., Hang, Y. & Lingyan, W. Study on the resistance of peach peach to root-knot nematode in northern
China. J. Chin. Agric. Univ. 14, 71–76 (2009).
38. Yu, K. et al. Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: Activity, action mechanism, and molecular docking. J. Sci. Food Agric. 102(9), 3771–3780 (2022).
39. Vaghela, B. et al. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme Microb. Technol. 159, 159 (2022).
40. Shibuya & Minami. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59, 223–233 (2001).
41. Jersey, G. et al. Role of chalcone synthase gene in resistance to Botrytis cinerea and downy mildew of grape. Chin. Agric. Sci. 55(6), 1139–1148 (2022).
42. Lei, Z. et al. Effect of chalcone synthase gene on anthocyanin metabolism in peach fruit [J]. J. Hortic. 42(1), 31–37 (2015).
43. Lu, Z. et al. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). Plant J. 107, 1320–1331 (2021).
44. Dandan, K. et al. Accumulation of sucrose and malic acid and expression of related genes in ‘Cangfang Zaosheng’ peach and its early maturing budding fruit. J. Hortic. 46(12), 2286–2298 (2019).
45. Li, R., Xia, S. & Liu, S. An improved method for extraction of plant DNA by CTAB. Lab. Res. Explor. 28(9), 3 (2009).
46. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
47. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
48. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
49. Ernst, J. & Bar-Joseph, Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinform. 7, 191 (2006).
50. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
51. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. & Cherry, J. M. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000).
52. Minoru, K., Miho, F., Mao, T., Yoko, S. & Kanae, M. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017).