Accessibility navigation


Divalent nanobodies to platelet CLEC-2 can serve as agonists or antagonists

Clark, J. C., Martin, E. M., Morán, L. A., Di, Y., Wang, X., Zuidscherwoude, M., Brown, H. C., Kavanagh, D. M., Hummert, J., Eble, J. A., Nieswandt, B., Stegner, D., Pollitt, A. Y., Herten, D.-P., Tomlinson, M. G., García, A. and Watson, S. P. (2023) Divalent nanobodies to platelet CLEC-2 can serve as agonists or antagonists. Communications Biology, 6 (1). 376. ISSN 2399-3642

[img]
Preview
Text (open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

5MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/s42003-023-04766-6

Abstract/Summary

CLEC-2 is a target for a new class of antiplatelet agent. Clustering of CLEC-2 leads to phosphorylation of a cytosolic YxxL and binding of the tandem SH2 domains in Syk, crosslinking two receptors. We have raised 48 nanobodies to CLEC-2 and crosslinked the most potent of these to generate divalent and tetravalent nanobody ligands. Fluorescence correlation spectroscopy (FCS) was used to show that the multivalent nanobodies cluster CLEC-2 in the membrane and that clustering is reduced by inhibition of Syk. Strikingly, the tetravalent nanobody stimulated aggregation of human platelets, whereas the divalent nanobody was an antagonist. In contrast, in human CLEC-2 knock-in mouse platelets, the divalent nanobody stimulated aggregation. Mouse platelets express a higher level of CLEC-2 than human platelets. In line with this, the divalent nanobody was an agonist in high-expressing transfected DT40 cells and an antagonist in low-expressing cells. FCS, stepwise photobleaching and non detergent membrane extraction show that CLEC-2 is a mixture of monomers and dimers, with the degree of dimerisation increasing with expression thereby favouring crosslinking of CLEC-2 dimers. These results identify ligand valency, receptor expression/dimerisation and Syk as variables that govern activation of CLEC-2 and suggest that divalent ligands should be considered as partial agonists.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:111090
Publisher:Nature Research

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation