Accessibility navigation

Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions

Bottero, I., Dominik, C., Schweiger, O., Albrecht, M., Attridge, E., Brown, M. J. F., Cini, E., Costa, C., De la Rúa, P., de Miranda, J. R., Di Prisco, G., Uuh, D. D., Hodge, S., Ivarsson, K., Knauer, A. C., Klein, A.-M., Mänd, M., Martínez-López, V., Medrzycki, P., Pereira-Peixoto, H. , Potts, S. ORCID:, Raimets, R., Rundlöf, M., M. Schwarz, J., Senapathi, D. ORCID:, Tamburini, G., Talaván, E. T. and Stout, J. C. (2023) Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions. Frontiers in ecology and evolution, 11. ISSN 2296-701X

[img] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3389/fevo.2023.1128228


Introduction: Heterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe. Methods: Using a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches). Results: We found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific. Discussion: Thus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.

Item Type:Article
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Sustainable Land Management > Centre for Agri-environmental Research (CAER)
ID Code:111958


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation