Accessibility navigation


Modelling the effect of aerosol and greenhouse gas forcing on the South and East Asian monsoons with an intermediate-complexity climate model

Recchia, L. G. ORCID: https://orcid.org/0000-0002-5907-9468 and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2023) Modelling the effect of aerosol and greenhouse gas forcing on the South and East Asian monsoons with an intermediate-complexity climate model. Earth System Dynamics, 14 (3). pp. 697-722. ISSN 2190-4987

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

11MB
[img] Text - Accepted Version
· Restricted to Repository staff only

8MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/esd-14-697-2023

Abstract/Summary

The South Asian and East Asian summer monsoons are globally significant meteorological features, creating a strongly seasonal pattern of precipitation, with the majority of the annual precipitation falling between June and September. The stability the monsoons is of extreme importance for a vast range of ecosystems and for the livelihoods of a large share of the world's population. Simulations are performed with an intermediate-complexity climate model in order to assess the future response of the South Asian and East Asian monsoons to changing concentrations of aerosols and greenhouse gases. The radiative forcing associated with absorbing aerosol loading consists of a mid-tropospheric warming and a compensating surface cooling, which is applied to India, Southeast Asia, and eastern China both concurrently and independently. The primary effect of increased absorbing aerosol loading is a decrease in summer precipitation in the vicinity of the applied forcing, although the regional responses vary significantly. The decrease in precipitation is not ascribable to a decrease in the precipitable water and instead derives from a reduction in the precipitation efficiency due to changes in the stratification of the atmosphere. When the absorbing aerosol loading is added in all regions simultaneously, precipitation in eastern China is most strongly affected, with a quite distinct transition to a low precipitation regime as the radiative forcing increases beyond 60 W m−2. The response is less abrupt as we move westward, with precipitation in southern India being least affected. By applying the absorbing aerosol loading to each region individually, we are able to explain the mechanism behind the lower sensitivity observed in India and attribute it to remote absorbing aerosol forcing applied over eastern China. Additionally, we note that the effect on precipitation is approximately linear with the forcing. The impact of doubling carbon dioxide levels is to increase precipitation over the region while simultaneously weakening the circulation. When the carbon dioxide and absorbing aerosol forcings are applied at the same time, the carbon dioxide forcing partially offsets the surface cooling and reduction in precipitation associated with the absorbing aerosol response. Assessing the relative contributions of greenhouse gases and aerosols is important for future climate scenarios, as changes in the concentrations of these species has the potential to impact monsoonal precipitation.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary Research Centres (IDRCs) > Centre for the Mathematics of Planet Earth (CMPE)
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:112180
Publisher:European Geosciences Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation