Conversion of forest to cinnamon plantation depletes soil carbon stocks in the top metre of the tropical highlands of Kerinci Regency, Jambi Province, IndonesiaAntony, D., Collins, C. D., Clark, J. M. ORCID: https://orcid.org/0000-0002-0412-8824 and Sizmur, T. ORCID: https://orcid.org/0000-0001-9835-7195 (2023) Conversion of forest to cinnamon plantation depletes soil carbon stocks in the top metre of the tropical highlands of Kerinci Regency, Jambi Province, Indonesia. Soil Use and Management. ISSN 0266-0032
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1111/sum.12974 Abstract/SummaryThis study aimed to investigate the effect of conversion from natural forest to cinnamon plantation on the top 1 m soil carbon stocks and soil characteristics. The project was conducted on Andosols of Kerinci Regency, Sumatera, Indonesia, sampling the soil profile under natural forests and a chronosequence of cinnamon plantations of different ages (1, 5 and 10 years). SOC stocks were quantified alongside physical properties (bulk density) and chemical properties (carbon, nitrogen, C/N ratio) to investigate the impact of land conversion. SOC stocks increased one year after conversion to cinnamon plantations, but then tended to decrease as the plantations got older. The initial increase was observed alongside decreasing bulk density one year after forest conversion to cinnamon plantation, likely as a result of the fresh input of (less dense) pyrogenic soil organic matter due to slash and burn practices and transport down the soil profile due to leaching. In older plantations SOC stocks were lower, probably because organic matter had been decomposed or leached out of the profile. The free particulate organic matter (fPOM) was isolated from selected topsoil and subsoil layers and analysed for carbon, nitrogen, and FTIR analysis. FTIR analysis revealed that topsoil fPOM contained more aromatic functional groups than subsoils and had a higher degree of decomposition. Aromatic and carbohydrate functional groups were initially lower in recently converted cinnamon plantation, but the trend was reversed 10 years after conversion. The initial flush of fresh organic matter into soils after slash and burn provides fPOM with a lower degree of decomposition but is short-lived and fPOM becomes more microbially processed as the cinnamon plantation ages. We conclude that, after a short term increase brought about by slash and burn, forest conversion to cinnamon plantation in Kerinci Regency depletes SOC stocks both in topsoil and subsoil.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |