Accessibility navigation


Horizontal viewsheds of large herbivores as a function of woodland structure

Gresham, A. ORCID: https://orcid.org/0000-0001-7628-5426, Healey, J. R., Eichhorn, M. P., Barton, O. ORCID: https://orcid.org/0000-0002-6181-8469, Smith, A. R. and Shannon, G. ORCID: https://orcid.org/0000-0002-5039-4904 (2023) Horizontal viewsheds of large herbivores as a function of woodland structure. Ecology and Evolution, 13 (11). e10699. ISSN 2045-7758

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

6MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/ece3.10699

Abstract/Summary

There is great potential for the use of terrestrial laser scanning (TLS) to quantify aspects of habitat structure in the study of animal ecology and behaviour. Viewsheds—the area visible from a given position—influence an animal's perception of risk and ability to respond to potential danger. The management and conservation of large herbivores and their habitats can benefit greatly from understanding how vegetation structure shapes viewsheds and influences animal activity patterns and foraging behaviour. This study aimed to identify how woodland understory structure influenced horizontal viewsheds at deer eye height. Mobile TLS was used in August 2020 to quantify horizontal visibility—in the form of Viewshed Coefficients (VC)—and understory leaf area index (LAI) of 71 circular sample plots (15‐m radius) across 10 woodland sites in North Wales (UK) where fallow deer (Dama dama) are present. The plots were also surveyed in summer for woody plant size structure, stem density and bramble (Rubus fruticosus agg.). Eight plots were re‐scanned twice in winter to compare seasonal VC values and assess scan consistency. Sample plots with higher densities of small stems had significantly reduced VC 1 m from the ground. Other stem size classes, mean percentage bramble cover and understory LAI did not significantly affect VC. There was no difference in VC between summer and winter scans, or between repeated winter scans. The density of small stems influenced viewsheds at deer eye height and may alter behavioural responses to perceived risk. This study demonstrates how TLS technology can be applied to address questions in large herbivore ecology and conservation.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences
ID Code:114066
Uncontrolled Keywords:Nature and Landscape Conservation, Ecology, Ecology, Evolution, Behavior and Systematics
Publisher:Wiley

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation