Skeletal keypoint-based transformer model for human action recognition in aerial videosUddin, S., Nawaz, T., Ferryman, J., Rashid, N., Asaduzzaman, M. and Nawaz, R. (2024) Skeletal keypoint-based transformer model for human action recognition in aerial videos. IEEE Access, 12. pp. 11095-11103. ISSN 2169-3536
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1109/ACCESS.2024.3354389 Abstract/SummarySeveral efforts have been made to develop effective and robust vision-based solutions for human aerial action recognition. Generally, the existing methods rely on the extraction of either spatial features (patch-based methods) or skeletal key points (pose-based methods) that are fed to a classifier. The pose-based methods are generally regarded to be more robust to background changes and computationally efficient. Moreover, at the classification stage, the use of deep networks has generated significant interest within the community; however, the need remains to develop accurate and computationally effective deep learning-based solutions. To this end, this paper proposes a lightweight Transformer network-based method for human action recognition in aerial videos using the skeletal keypoints extracted with YOLOv8. The effectiveness of the proposed method is shown on a well-known public dataset containing 13 action classes, achieving very encouraging performance in terms of accuracy and computational cost as compared to several existing related methods.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |