• Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
• Ainsworth EA, Long SP (2021) 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology 27: 27–49. https://doi.org/10.1111/gcb.15375
• Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike. Springer, pp 199–213.
• Alam SM (1999) Nutrient uptake by plants under stress conditions. Handbook of Plant and Crop Stress 2, 285–313.
• Allen RB, Millard P, Richardson SJ (2017) A Resource Centric View of Climate and Mast Seeding in Trees. In: Cánovas FM, Lüttge U, Matyssek R (eds.), Progress in Botany Vol. 79. Springer International Publishing, Cham, pp 233–268. https://doi.org/10.1007/124_2017_8
• Askeyev O, Tishin D, Sparks T, Askeyev I (2005) The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. International Journal of Biometeorology 49: 262–266. https://doi.org/10.1007/s00484-004-0233-3
• Boavida LC, Silva JP, Feijó JA (2001) Sexual reproduction in the cork oak (Quercus suber L.). II. Crossing intra-and interspecific barriers. Sexual Plant Reproduction 14: 143–152. http://dx.doi.org/10.1007/s004970100100
• Bogdziewicz M, Kelly D, Thomas PA, Lageard JG, Hacket-Pain A (2020) Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants 6: 88–94.
• Bogdziewicz M, Szymkowiak J, Fernandez-Martinez M, Penuelas J, Espelta JM (2019) The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agricultural and Forest Meteorology 268: 109–115. https://doi.org/10.1016/j.agrformet.2019.01.016
• Bole D (2022) Addressing the possible shortfall of oak for the 2022/23 planting season. URL https://forestrycommission.blog.gov.uk/2022/07/21/addressing-the-possible-shortfall-of-oak-for-the-2022-23-planting-season/[accessed on 13 July 2023]
• Bradwell AR (2022) Norbury Park: An estate tackling climate change. Norbury Park Estate.
• Brienen RJW, Caldwell L, Duchesne L, Voelker S, Barichivich J, Baliva M, Ceccantini G, Di Filippo A, Helama S, Locosselli GM, Lopez L, Piovesan G, Scöngart J, Villalba R, Gloor E (2020) Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature Communications 11: 4241. https://doi.org/10.1038/s41467-020-17966-z
• Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications 10: 2171. https://doi.org/10.1038/s41467-019-10174-4
• Canelo T, Gaytán Á, González-Bornay G, Bonal R (2018) Seed loss before seed predation: Experimental evidence of the negative effects of leaf feeding insects on acorn production. Integrative Zoology 13: 238–250. https://doi.org/10.1111/1749-4877.12292
• Darbah JNT, Kubiske ME, Nelson N, Oksanen E, Vapaavuori E, Karnosky DF (2008) Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environmental Pollution 155: 446–452. https://doi.org/10.1016/j.envpol.2008.01.033
• De Graaff M.-A, Van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology 12: 2077–2091.
• US DOE (2020) US Department of energy free-air CO2 enrichment experiments: FACE results, lessons, and legacy. DOE/SC–0202. U.S. Department of Energy Office of Science https://doi:10.2172/1615612.
• Dickson R, Tomlinson P (1996) Oak growth, development and carbon metabolism in response to water stress. Ann. For. Sci. 53: 181–196. https://doi.org/10.1051/forest:19960202
• Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609–639. https://doi.org/10.1146/annurev.arplant.48.1.609
• Espelta JM, Cortés P, Molowny-Horas R, Sánchez-Humanes B, Retana J (2008) Masting mediated by summer drought reduces acorn predation in mediterranean oak forests. Ecology 89: 805–817. https://doi.org/10.1890/07-0217.1
• Flannigan, M.D., Stocks, B.J., Wotton, B.M., 2000. Climate change and forest fires. Science of the Total Environment 262: 221–229.
• Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner M-C, Venner S (2023) Oak masting drivers vary between populations depending on their climatic environments. Current Biology 33: 1117-1124.e4. https://doi.org/10.1016/j.cub.2023.01.034
• Gardner AM, Jiang M,. Ellsworth DS, MacKenzie AR, Pritchard J, Bader MK-F, Barton C, Bernacchi C, Calfapietra C, Crous KY, Dusenge ME, Gimeno TE, Hall M, Lamba S, Leuzinger S, Uddling J, Warren J, Wallin G, Medlyn BE (2022a) Optimal stomatal behaviour predicts CO2 responses of stomatal conductance in gymnosperm and angiosperm trees. New Phytologist 237(4): 1229-1241. https://doi.org/10.1111/nph.18618
• Gardner A, Ellsworth DS, Crous KY, Pritchard J, MacKenzie AR, (2022b) Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur? Tree Physiology 42: 130–144. https://doi.org/10.1093/treephys/tpab090
• Gardner A, Ellsworth DS, Pritchard J, MacKenzie A (2022c) Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees? Trees 36: 1797–1809. https://doi.org/10.1007/s00468-022-02328-7
• Gómez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58: 71–80.
• Hacket-Pain A (2021) Masting. Current Biology 31: R884–R885. https://doi.org/10.1016/j.cub.2021.06.007
• Hall MC, Stiling P, Moon DC, Drake BG, Hunter MD (2005) Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. Journal of Chemical Ecology 31: 267–286. https://doi.org/10.1007/s10886-005-1340-2
• Hart KM, Curioni G, Blaen P, Harper NJ, Miles P, Lewin K, Nagy J, Bannister EJ, Cai XM, Thomas RM, Krause S, Tausz M, MacKenzie AR (2019) Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Global Change Biology 26: 1023–1037. https://doi.org/10.1111/gcb.14786
• Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology 5: 293–309. http://dx.doi.org/10.1046/j.1365-2486.1999.00228.x
• Hoch G, Siegwolf RT, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171: 653–662.
• Ibáñez I, Clark JS, Dietze MC, Feeley K, Hersh M, LaDeau S, McBride A, Welch NE, Wolosin MS (2006) Predicting biodiversity change: Outside the climate envelope, beyond the species–area curve. Ecology 87: 1896–1906. https://doi.org/10.1890/0012-9658(2006)87[1896:PBCOTC]2.0.CO;2
• IPCC (2023) Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001
• Isagi Y, Sugimura K, Sumida A, Ito H (1997) How does masting happen and synchronize? Journal of Theoretical Biology 187: 231–239. https://doi.org/10.1006/jtbi.1997.0442
• Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytologist 156: 9–26. https://doi.org/10.1046/j.1469-8137.2002.00494.x
• Kampichler C, Teschner M, Klein S, Körner C (2008) Effects of 4 years of CO2 enrichment on the abundance of leaf-galls and leaf-mines in mature oaks. Acta Oecologica 34: 139–146. https://doi.org/10.1016/j.actao.2008.05.006
• Kelly D (1994) The evolutionary ecology of mast seeding. Trends in Ecology and Evolution 9: 465–470. https://doi.org/10.1016/0169-5347(94)90310-7
• Khaine I, Woo SY (2015) An overview of interrelationship between climate change and forests. Forest Science and Technology 11: 11–18. https://doi.org/10.1080/21580103.2014.932718
• Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77: 293–368. http://dx.doi.org/10.1016/S0065-2113(02)77017-X
• Koenig WD, Knops JMH (2005) The mystery of masting in trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why? American Scientist 93: 340–347. http://www.jstor.com/stable/27858609
• Komatsu H, Katayama A, Hirose S, Kume A, Higashi N, Ogawa S, Otsuki K (2007) Reduction in soil water availability and tree transpiration in a forest with pedestrian trampling. Agricultural and Forest Meteorology 146: 107–114. http://dx.doi.org/10.1016/j.agrformet.2007.04.014
• LaDeau SL, Clark JS (2001) Rising CO2 levels and the fecundity of forest trees. Science 292: 95–98. https://doi.org/10.1126/science.1057547
• Langsrud Ø (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of square. Statistics and Computing 13: 163-167. https://doi.org/10.1023/A:1023260610025
• Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology 55: 591–628. http://dx.doi.org/10.1146/annurev.arplant.55.031903.141610
• MacKenzie AR, Krause S, Hart KM, Thomas RM, Blaen PJ, Hamilton RL, Curioni G, Quick SE, Kourmouli A, Hannah DM, Comer-Warner SA, Brekenfeld N, Ullah S, Press MC (2021) BIFoR FACE: Water–soil–vegetation–atmosphere data from a temperate deciduous forest catchment, including under elevated CO2. Hydrological Processes 35: e14096. https://doi.org/10.1002/hyp.14096
• Martínez-Baroja L, Pérez-Camacho L, Villar-Salvador P, Rebollo S, Quiles P, Gómez-Sánchez D, Molina-Morales M, Leverkus AB, Castro J, Rey-Benayas JM (2019) Massive and effective acorn dispersal into agroforestry systems by an overlooked vector, the Eurasian magpie (Pica pica). Ecosphere 10: e02989. https://doi.org/10.1002/ecs2.2989
• Mayoral C, Ioni S, Luna E, Crowley L, Hayward S, Sadler JP, Mackenzie AR (2023) Elevated CO2 does not improve seedling performance in a naturally regenerated oak woodland exposed to biotic stressors. Frontiers in Forests and Global Change 6: 1278409.
• Obeso JR (2002) The costs of reproduction in plants. New Phytologist 155: 321–348. http://dx.doi.org/10.1046/j.1469-8137.2002.00477.x
• Palacio S, Hoch G, Sala A, Körner C, Millard P (2014) Does carbon storage limit tree growth? New Phytologist 201: 1096–1100. https://doi.org/10.1111/nph.12602
• Pau S, Okamoto DK, Calderón O, Wright SJ (2018) Long-term increases in tropical flowering activity across growth forms in response to rising CO2 and climate change. Global Change Biology 24: 2105–2116. https://doi.org/10.1111/gcb.14004
• Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding: Resources, weather, cues, and selection. New Phytologist 212: 546–562. https://doi.org/10.1111/nph.14114
• Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175–198. https://doi.org/10.1046/j.1469-8137.2003.00680.x
• Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Global Change Biology 5: 807–837. https://doi.org/10.1046/j.1365-2486.1999.00268.x
• R Core Team (2021) R: A language and environment for statistical computing.
• Roberts AJ, Crowley LM, Sadler JP, Nguyen TT, Gardner AM, Hayward SA, Metcalfe DB (2022) Effects of elevated atmospheric CO2 concentration on insect herbivory and nutrient fluxes in a mature temperate forest. Forests 13: 998. http://dx.doi.org/10.3390/f13070998
• Ruehr S, Keenan TF, Williams C, Zhou Y, Lu X, Bastos A, Canadell JG, Prentice IC, Sitch S, Terrer C (2023) Evidence and attribution of the enhanced land carbon sink. Nature Reviews Earth and Environment 4: 518-534. https://doi.org/10.1038/s43017-023-00456-3
• Sever K, Bogdan S, Škvorc Ž (2023) Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. Journal of Forest Research 34: 167–176. https://doi.org/10.1007/s11676-022-01505-1
• Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal 54: 1619–1625. http://dx.doi.org/10.2136/sssaj1990.03615995005400060018x
• Stiling P, Moon D, Hymus G, Drake B (2004) Differential effects of elevated CO2 on acorn density, weight, germination, and predation among three oak species in a scrub-oak forest. Global Change Biology 10: 228–232. https://doi.org/10.1111/j.1365-2486.2004.00728.x
• Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathology 60: 133–149. https://doi.org/10.1111/j.1365-3059.2010.02406.x
• Wand SJ, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5: 723–741. http://dx.doi.org/10.1046/j.1365-2486.1999.00265.x
• Way DA, Ladeau SL, McCarthy HR, Clark JS, Oren RAM, Finzi AC, Jackson RB (2010) Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biology 16: 1046–1056.
• Wesołowski T, Rowiński P, Maziarz M (2015) Interannual variation in tree seed production in a primeval temperate forest: Does masting prevail? European Journal of Forest Research 134: 99–112. https://doi.org/10.1007/s10342-014-0836-0
• Wheeler TR, Daymond AJ, Morrison JIL, Ellis RH, Hadley P (2004) Acclimation of photosynthesis to elevated CO2 in onion (Allium cepa) grown at a range of temperatures. Annals of Applied Biology 144: 103-111.
• Zhu Z, Piao S, Myneni R, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N (2016) Greening of the Earth and its drivers. Nature Climate Change 6: 791–795. https://doi.org/10.1038/nclimate3004