Stable isotope analyses reveal impact of Fe and Zn on Cd uptake and translocation by Theobroma cacaoMoore, R. E. T. ORCID: https://orcid.org/0000-0002-9056-8980, Ullah, I. ORCID: https://orcid.org/0000-0002-9367-6741, Dunwell, J. M. ORCID: https://orcid.org/0000-0003-2147-665X and Rehkämper, M. ORCID: https://orcid.org/0000-0002-0075-9872 (2024) Stable isotope analyses reveal impact of Fe and Zn on Cd uptake and translocation by Theobroma cacao. Plants, 13 (4). 551. ISSN 2223-7747
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/plants13040551 Abstract/SummaryHigh concentrations of toxic cadmium (Cd) in soils are problematic as the element accumulates in food crops such as rice and cacao. A mitigation strategy to minimise Cd accumulation is to enhance the competitive uptake of plant-essential metals. Theobroma cacao seedlings were grown hydroponically with added Cd. Eight different treatments were used, which included/excluded hydroponic or foliar zinc (Zn) and/or iron (Fe) for the final growth period. Analyses of Cd concentrations and natural stable isotope compositions by multiple collector ICP-MS were conducted. Cadmium uptake and translocation decreased when Fe was removed from the hydroponic solutions, while the application of foliar Zn-EDTA may enhance Cd translocation. No significant differences in isotope fractionation during uptake were found between treatments. Data from all treatments fit a single Cd isotope fractionation model associated with sequestration (seq) of isotopically light Cd in roots and unidirectional mobilisation (mob) of isotopically heavier Cd to the leaves (ε114Cdseq-mob = −0.13‰). This result is in excellent agreement with data from an investigation of 19 genetically diverse cacao clones. The different Cd dynamics exhibited by the clones and seen in response to different Fe availability may be linked to similar physiological processes, such as the regulation of specific transporter proteins.
DownloadsDownloads per month over past year
1. Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; ISBN 9789811320224.
2. de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The Molecular-physiological Functions of Mineral Macronutrients and Their Consequences for Deficiency Symptoms in Plants. New Phytol. 2020, 229, 2446–2469. [CrossRef]
3. Küpper, H.; Andresen, E. Mechanisms of Metal Toxicity in Plants. Metallomics 2016, 8, 269–285. [CrossRef] [PubMed]
4. Qin, S.; Liu, H.; Nie, Z.; Rengel, Z.; Gao, W.; Li, C.; Zhao, P. Toxicity of Cadmium and Its Competition with Mineral Nutrients for Uptake by Plants: A Review. Pedosphere 2020, 30, 168–180. [CrossRef]
5. de Oliveira, V.H.; Ullah, I.; Dunwell, J.M.; Tibbett, M. Mycorrhizal Symbiosis Induces Divergent Patterns of Transport and Partitioning of Cd and Zn in Populus trichocarpa. Environ. Exp. Bot. 2020, 171, 103925. [CrossRef]
6. Palmer, C.M.; Guerinot, M.L. Facing the Challenges of Cu, Fe and Zn Homeostasis in Plants. Nat. Chem. Biol. 2009, 5, 333–340. [CrossRef] [PubMed]
7. Sinclair, S.A.; Krämer, U. The Zinc Homeostasis Network of Land Plants. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1553–1567. [CrossRef] [PubMed]
8. Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [CrossRef] [PubMed]
9. Argüello, D.; Chavez, E.; Lauryssen, F.; Vanderschueren, R.; Smolders, E.; Montalvo, D. Soil Properties and Agronomic Factors Affecting Cadmium Concentrations in Cacao Beans: A Nationwide Survey in Ecuador. Sci. Total Environ. 2019, 649, 120–127. [CrossRef] [PubMed]
10. Fechner, C.; Greiner, M.; Heseker, H.; Lindtner, O. Dietary Exposure Assessment of Aluminium and Cadmium from Cocoa in Relation to Cocoa Origin. PLoS ONE 2019, 14, e0217990. [CrossRef]
11. Maddela, N.R.; Kakarla, D.; García, L.C.; Chakraborty, S.; Venkateswarlu, K.; Megharaj, M. Cocoa-Laden Cadmium Threatens Human Health and Cacao Economy: A Critical View. Sci. Total Environ. 2020, 720, 137645. [CrossRef]
12. Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. [CrossRef] [PubMed]
13. Vanderschueren, R.; De Mesmaeker, V.; Mounicou, S.; Isaure, M.P.; Doelsch, E.; Montalvo, D.; Delcour, J.A.; Chavez, E.; Smolders, E. The Impact of Fermentation on the Distribution of Cadmium in Cacao Beans. Food Res. Int. 2020, 127, 108743. [CrossRef]
14. Vanderschueren, R.; Montalvo, D.; De Ketelaere, B.; Delcour, J.A.; Smolders, E. The Elemental Composition of Chocolates Is Related to Cacao Content and Origin: A Multi-Element Fingerprinting Analysis of Single Origin Chocolates. J. Food Compos. Anal. 2019, 83, 103277. [CrossRef]
15. Zug, K.L.M.; Huamaní Yupanqui, H.A.; Meyberg, F.; Cierjacks, J.S.; Cierjacks, A. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water, Air, Soil Pollut. 2019, 230, 72. [CrossRef]
16. Engbersen, N.; Gramlich, A.; Lopez, M.; Schwarz, G.; Hattendorf, B.; Gutierrez, O.; Schulin, R. Cadmium Accumulation and Allocation in Different Cacao Cultivars. Sci. Total Environ. 2019, 678, 660–670. [CrossRef] [PubMed]
17. Vanderschueren, R.; Argüello, D.; Blommaert, H.; Montalvo, D.; Barraza, F.; Maurice, L.; Schreck, E.; Schulin, R.; Lewis, C.; Vazquez, J.L.; et al. Mitigating the Level of Cadmium in Cacao Products: Reviewing the Transfer of Cadmium from Soil to Chocolate Bar. Sci. Total Environ. 2021, 781, 146779. [CrossRef]
18. Lewis, C.; Lennon, A.M.; Eudoxie, G.; Umaharan, P. Genetic Variation in Bioaccumulation and Partitioning of Cadmium in Theobroma cacao L. Sci. Total Environ. 2018, 640–641, 696–703. [CrossRef]
19. The European Commission. Commission Regulation (EU) No 488/ 2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Off. J. Eur. Union 2014, 138, 75–79.
20. dos Santos, M.L.S.; de Almeida, A.A.F.; da Silva, N.M.; Oliveira, B.R.M.; Silva, J.V.S.; Junior, J.O.S.; Ahnert, D.; Baligar, V.C. Mitigation of Cadmium Toxicity by Zinc in Juvenile Cacao: Physiological, Biochemical, Molecular and Micromorphological Responses. Environ. Exp. Bot. 2020, 179, 104201. [CrossRef]
21. Du, J.; Zeng, J.; Ming, X.; He, Q.; Tao, Q.; Jiang, M.; Gao, S.; Li, X.; Lei, T.; Pan, Y.; et al. The Presence of Zinc Reduced Cadmium Uptake and Translocation in Cosmos bipinnatus Seedlings under Cadmium/Zinc Combined Stress. Plant Physiol. Biochem. 2020, 151, 223–232. [CrossRef]
22. Lin, Y.F.; Aarts, M.G.M. The Molecular Mechanism of Zinc and Cadmium Stress Response in Plants. Cell. Mol. Life Sci. 2012, 69, 3187–3206. [CrossRef]
23. Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Maqbool, A. A Critical Review on the Effects of Zinc at Toxic Levels of Cadmium in Plants. Environ. Sci. Pollut. Res. 2019, 26, 6279–6289. [CrossRef]
24. Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight. Plants 2020, 9, 223. [CrossRef]
25. Huang, G.; Ding, C.; Zhou, Z.; Zhang, T.; Wang, X. A Tillering Application of Zinc Fertilizer Based on Basal Stabilization Reduces Cd Accumulation in Rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2019, 167, 338–344. [CrossRef]
26. Lv, G.; Wang, H.; Xu, C.; Shuai, H.; Luo, Z.; Zhang, Q.; Zhu, H.; Wang, S.; Zhu, Q.; Zhang, Y.; et al. Effectiveness of Simultaneous Foliar Application of Zn and Mn or P to Reduce Cd Concentration in Rice Grains: A Field Study. Environ. Sci. Pollut. Res. 2019, 26, 9305–9313. [CrossRef]
27. Wang, H.; Xu, C.; Luo, Z.C.; Zhu, H.H.; Wang, S.; Zhu, Q.H.; Huang, D.Y.; Zhang, Y.Z.; Xiong, J.; He, Y.B. Foliar Application of Zn Can Reduce Cd Concentrations in Rice (Oryza sativa L.) under Field Conditions. Environ. Sci. Pollut. Res. 2018, 25, 29287–29294. [CrossRef] [PubMed]
28. Yang, Y.; Li, Y.; Chen, W.; Wang, M.; Wang, T.; Dai, Y. Dynamic Interactions between Soil Cadmium and Zinc Affect Cadmium Phytoavailability to Rice and Wheat: Regional Investigation and Risk Modeling. Environ. Pollut. 2020, 267, 115613. [CrossRef] [PubMed]
29. Zhang, W.; Long, J.; Li, J.; Zhang, M.; Xiao, G.; Ye, X.; Chang, W.; Zeng, H. Impact of ZnO Nanoparticles on Cd Toxicity and Bioaccumulation in Rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2019, 26, 23119–23128. [CrossRef]
30. Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.-J. Cadmium Contamination in Agricultural Soils of China and the Impact on Food Safety. Environ. Pollut. 2019, 249, 1038–1048. [CrossRef] [PubMed]
31. Saifullah; Javed, H.; Naeem, A.; Rengel, Z.; Dahlawi, S. Timing of Foliar Zn Application Plays a Vital Role in Minimizing Cd Accumulation in Wheat. Environ. Sci. Pollut. Res. 2016, 23, 16432–16439. [CrossRef]
32. Sharifan, H.; Ma, X.; Moore, J.M.; Habib, M.R.; Evans, C. Zinc Oxide Nanoparticles Alleviated the Bioavailability of Cadmium and Lead and Changed the Uptake of Iron in Hydroponically Grown Lettuce (Lactuca sativa L. Var. Longifolia). ACS Sustain. Chem. Eng. 2019, 7, 16401–16409. [CrossRef]
33. Zare, A.A.; Khoshgoftarmanesh, A.H.; Malakouti, M.J.; Bahrami, H.A.; Chaney, R.L. Root Uptake and Shoot Accumulation of Cadmium by Lettuce at Various Cd:Zn Ratios in Nutrient Solution. Ecotoxicol. Environ. Saf. 2018, 148, 441–446. [CrossRef]
34. Wu, S.; Shi, K.; Hu, C.; Guo, J.; Tan, Q.; Sun, X. Non-Invasive Microelectrode Cadmium Flux Measurements Reveal the Decrease of Cadmium Uptake by Zinc Supply in Pakchoi Root (Brassica chinensis L.). Ecotoxicol. Environ. Saf. 2019, 168, 363–368. [CrossRef]
35. Kutrowska, A.; Małecka, A.; Piechalak, A.; Masiakowski, W.; Han´c, A.; Barałkiewicz, D.; Andrzejewska, B.; Zbierska, J.; Tomaszewska, B. Effects of Binary Metal Combinations on Zinc, Copper, Cadmium and Lead Uptake and Distribution in Brassica Juncea. J. Trace Elem. Med. Biol. 2017, 44, 32–39. [CrossRef] [PubMed]
36. de Oliveira, V.H.; Tibbett, M. Tolerance, Toxicity and Transport of Cd and Zn in Populus trichocarpa. Environ. Exp. Bot. 2018, 155, 281–292. [CrossRef]
37. Arévalo-Gardini, E.; Arévalo-Hernández, C.O.; Baligar, V.C.; He, Z.L. Heavy Metal Accumulation in Leaves and Beans of Cacao (Theobroma cacao L.) in Major Cacao Growing Regions in Peru. Sci. Total Environ. 2017, 605–606, 792–800. [CrossRef] [PubMed]
38. Neto, R.D.O.C.; Júnior, J.O.D.S.; Sodré, G.A.; Baligar, V.C. Growth and Nutrition of Cacao Seedlings Influenced by Zinc Aplication in Soil. Rev. Bras. Frutic. 2015, 37, 1053–1064. [CrossRef]
39. Júnior, J.O.d.S.; da Silveira, F.G.F.; dos Santos, R.O.; Neves, J.C.L. Zinc Fertilizers and Additives for Foliar Fertilization of Cocoa Seedlings. J. Agric. Sci. 2018, 11, 471. [CrossRef]
40. Huang, D.; Dai, W. Two Iron-Regulated Transporter (IRT) Genes Showed Differential Expression in Poplar Trees under Iron or Zinc Deficiency. J. Plant Physiol. 2015, 186–187, 59–67. [CrossRef] [PubMed]
41. Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron Deficiency Enhances Cadmium Uptake and Translocation Mediated by the Fe2+ Transporters OsIRT1 and OsIRT2 in Rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [CrossRef]
42. Bashir, A.; Rizwan, M.; Ali, S.; Zia ur Rehman, M.; Ishaque, W.; Atif Riaz, M.; Maqbool, A. Effect of Foliar-Applied Iron Complexed with Lysine on Growth and Cadmium (Cd) Uptake in Rice under Cd Stress. Environ. Sci. Pollut. Res. 2018, 25, 20691–20699. [CrossRef]
43. Chen, Z.; Tang, Y.T.; Yao, A.J.; Cao, J.; Wu, Z.H.; Peng, Z.R.; Wang, S.Z.; Xiao, S.; Baker, A.J.M.; Qiu, R.L. Mitigation of Cd Accumulation in Paddy Rice (Oryza sativa L.) by Fe Fertilization. Environ. Pollut. 2017, 231, 549–559. [CrossRef] [PubMed]
44. Hussain, A.; Ali, S.; Rizwan, M.; Rehman, M.Z.U.; Qayyum, M.F.; Wang, H.; Rinklebe, J. Responses of Wheat (Triticum aestivum) Plants Grown in a Cd Contaminated Soil to the Application of Iron Oxide Nanoparticles. Ecotoxicol. Environ. Saf. 2019, 173, 156–164. [CrossRef] [PubMed]
45. Jiang, Y.; Chen, X.; Chai, S.; Sheng, H.; Sha, L.; Fan, X.; Zeng, J.; Kang, H.; Zhang, H.; Xiao, X.; et al. TpIRT1 is a Transition Metal Transporter in Polish Wheat (Triticum polonicum L.) with a Broad Substrate Specificity. 2021. [CrossRef]
46. Cohen, C.K.; Garvin, D.F.; Kochian, L.V. Kinetic Properties of a Micronutrient Transporter from Pisum sativum Indicate a Primary Function in Fe Uptake from the Soil. Planta 2004, 218, 784–792. [CrossRef]
47. Wiggenhauser, M.; Moore, R.E.T.; Wang, P.; Bienert, G.P.; Laursen, K.H.; Blotevogel, S. Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review. Front. Plant Sci. 2022, 13, 840941. [CrossRef] [PubMed]
48. Arnold, T.; Markovic, T.; Kirk, G.J.D.; Schönbächler, M.; Rehkämper, M.; Zhao, F.J.; Weiss, D.J. Iron and Zinc Isotope Fractionation during Uptake and Translocation in Rice (Oryza sativa) Grown in Oxic and Anoxic Soils. Comptes Rendus Geosci. 2015, 347, 397–404. [CrossRef]
49. Arnold, T.; Kirk, G.J.D.; Wissuwa, M.; Frei, M.; Zhao, F.J.; Mason, T.F.D.; Weiss, D.J. Evidence for the Mechanisms of Zinc Uptake by Rice Using Isotope Fractionation. Plant Cell Environ. 2010, 33, 370–381. [CrossRef] [PubMed]
50. Liu, C.; Gao, T.; Liu, Y.; Liu, J.; Li, F.; Chen, Z.; Li, Y.; Lv, Y.; Song, Z.; Reinfelder, J.R.; et al. Isotopic Fingerprints Indicate Distinct Strategies of Fe Uptake in Rice. Chem. Geol. 2019, 524, 323–328. [CrossRef]
51. Moore, R.E.T.; Ullah, I.; de Oliveira, V.H.; Hammond, S.J.; Strekopytov, S.; Tibbett, M.; Dunwell, J.M.; Rehkämper, M. Cadmium Isotope Fractionation Reveals Genetic Variation in Cd Uptake and Translocation by Theobroma cacao and Role of Natural Resistance-Associated Macrophage Protein 5 and Heavy Metal ATPase-Family Transporters. Hortic. Res. 2020, 7, 71. [CrossRef]
52. Wiggenhauser, M.; Bigalke, M.; Imseng, M.; Müller, M.; Keller, A.; Murphy, K.; Kreissig, K.; Rehkämper, M.; Wilcke, W.; Frossard, E. Cadmium Isotope Fractionation in Soil–Wheat Systems. Environ. Sci. Technol. 2016, 50, 9223–9231. [CrossRef]
53. Wiggenhauser, M.; Aucour, A.-M.; Bureau, S.; Campillo, S.; Telouk, P.; Romani, M.; Ma, J.F.; Landrot, G.; Sarret, G. Cadmium Transfer in Contaminated Soil-Rice Systems: Insights from Solid-State Speciation Analysis and Stable Isotope Fractionation. Environ. Pollut. 2021, 269, 115934. [CrossRef]
54. Zhang, S.N.; Gu, Y.; Zhu, Z.L.; Hu, S.H.; Kopittke, P.M.; Zhao, F.J.; Wang, P. Stable Isotope Fractionation of Cadmium in the Soil-Rice-Human Continuum. Sci. Total Environ. 2021, 761, 143262. [CrossRef] [PubMed]
55. Zhong, S.; Li, X.; Li, F.; Liu, T.; Huang, F.; Yin, H.; Chen, G. Water Management Alters Cadmium Isotope Fractionation between Shoots and Nodes/Leaves in a Soil-Rice System. Environ. Sci. Technol. 2021, 55, 12902–12913. [CrossRef] [PubMed]
56. Zhong, S.; Li, X.; Li, F.; Huang, Y.; Liu, T.; Yin, H.; Qiao, J.; Chen, G.; Huang, F. Cadmium Uptake and Transport Processes in Rice Revealed by Stable Isotope Fractionation and Cd-Related Gene Expression. Sci. Total Environ. 2021, 806, 150633. [CrossRef]
57. Imseng, M.; Wiggenhauser, M.; Keller, A.; Müller, M.; Rehkämper, M.; Murphy, K.; Kreissig, K.; Frossard, E.; Wilcke, W.; Bigalke, M. Towards an Understanding of the Cd Isotope Fractionation during Transfer from the Soil to the Cereal Grain. Environ. Pollut. 2019, 244, 834–844. [CrossRef]
58. Barraza, F.; Moore, R.E.T.; Rehkämper, M.; Schreck, E.; Lefeuvre, G.; Kreissig, K.; Coles, B.J.; Maurice, L. Cadmium Isotope Fractionation in the Soil-Cacao Systems of Ecuador: A Pilot Field Study. RSC Adv. 2019, 9, 34011–34022. [CrossRef]
59. Blommaert, H.; Aucour, A.; Wiggenhauser, M.; Moens, C.; Telouk, P.; Landrot, G.; Testemale, D.; Pin, S.; Lewis, C.; Umaharan, P.; et al. From Soil to Cacao Bean: Unravelling the Pathways of Cadmium Translocation in a High Cd Accumulating Cultivar of Theobroma cacao L. Front. Plant Sci. 2022, 13, 1055912. [CrossRef]
60. Wei, R.; Guo, Q.; Wen, H.; Liu, C.; Yang, J.; Peters, M.; Hu, J.; Zhu, G.; Zhang, H.; Tian, L.; et al. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum. Sci. Rep. 2016, 6, 24309. [CrossRef] [PubMed]
61. Wei, R.; Guo, Q.; Yu, G.; Kong, J.; Li, S.; Song, Z.; Hu, J.; Tian, L.; Han, X.; Okoli, C.P. Stable Isotope Fractionation during Uptake and Translocation of Cadmium by Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum as Influenced by EDTA. Environ. Pollut. 2018, 236, 634–644. [CrossRef]
62. Zhou, J.; Li, Z.; Liu, M.; Yu, H.; Wu, L.; Huang, F.; Luo, Y.; Christie, P. Cadmium Isotopic Fractionation in the Soil − Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species. Environ. Sci. Technol. 2020, 54, 13598–13609. [CrossRef]
63. Barati, E.; Moore, R.E.T.; Ullah, I.; Kreissig, K.; Coles, B.J.; Dunwell, J.M.; Rehkämper, M. An Investigation of Zinc Isotope Fractionation in Cacao (Theobroma cacao L.) and Comparison of Zinc and Cadmium Isotope Compositions in Hydroponic Plant Systems under High Cadmium Stress. Sci. Rep. 2023, 13, 4682. [CrossRef]
64. Wiggenhauser, M.; Bigalke, M.; Imseng, M.; Keller, A.; Archer, C.; Wilcke, W.; Frossard, E. Zinc Isotope Fractionation during Grain Filling of Wheat and a Comparison of Zinc and Cadmium Isotope Ratios in Identical Soil–Plant Systems. New Phytol. 2018, 219, 195–205. [CrossRef]
65. Zhou, J.; Moore, R.E.T.; Rehkämper, M.; Kreissig, K.; Coles, B.; Sun, Y.; Li, Z.; Luo, Y.; Christie, P.; Wu, L. Zinc Supply Affects Cadmium Uptake and Translocation in the Hyperaccumulator Sedum plumbizincicola as Evidenced by Isotope Fractionation. Environ. Sci. Technol. 2023, 57, 5891–5902. [CrossRef] [PubMed]
66. Fujii, T.; Moynier, F.; Blichert-Toft, J.; Albarède, F. Density Functional Theory Estimation of Isotope Fractionation of Fe, Ni, Cu, and Zn among Species Relevant to Geochemical and Biological Environments. Geochim. Cosmochim. Acta 2014, 140, 553–576. [CrossRef]
67. Zhao, Y.; Li, Y.; Wiggenhauser, M.; Yang, J.; Sarret, G.; Cheng, Q.; Liu, J.; Shi, Y. Theoretical Isotope Fractionation of Cadmium during Complexation with Organic Ligands. Chem. Geol. 2021, 571, 120178. [CrossRef]
68. Murphy, K.; Rehkämper, M.; Kreissig, K.; Coles, B.; van de Flierdt, T. Improvements in Cd Stable Isotope Analysis Achieved through Use of Liquid-Liquid Extraction to Remove Organic Residues from Cd Separates Obtained by Extraction Chromatography. J. Anal. At. Spectrom. 2016, 31, 319–327. [CrossRef]
69. Aucour, A.M.; Pichat, S.; MacNair, M.R.; Oger, P. Fractionation of Stable Zinc Isotopes in the Zinc Hyperaccumulator Arabidopsis halleri and Nonaccumulator Arabidopsis petraea. Environ. Sci. Technol. 2011, 45, 9212–9217. [CrossRef] [PubMed]
70. Xue, Z.; Rehkämper, M.; Schönbächler, M.; Statham, P.J.; Coles, B.J. A New Methodology for Precise Cadmium Isotope Analyses of Seawater. Anal. Bioanal. Chem. 2012, 402, 883–893. [CrossRef]
71. Abouchami, W.; Galer, S.J.G.; Horner, T.J.; Rehkämper, M.; Wombacher, F.; Xue, Z.; Lambelet, M.; Gault-Ringold, M.; Stirling, C.H.; Schönbächler, M.; et al. A Common Reference Material for Cadmium Isotope Studies-NIST SRM 3108. Geostand. Geoanalytical Res. 2013, 37, 5–17. [CrossRef]
72. Lv, W.; Yin, H.; Liu, M.; Huang, F.; Yu, H. Effect of the Dry-Ashing Method on Cadmium Isotope Measurements in Soil and Plant Samples. Geostand. Geoanalytical Res. 2020, 45, 245–256. [CrossRef]
73. Boroviˇcka, J.; Ackerman, L.; Rejšek, J. Cadmium Isotopic Composition of Biogenic Certified Reference Materials Determined by Thermal Ionization Mass Spectrometry with Double Spike Correction. Talanta 2021, 221, 121389. [CrossRef]
74. Hossain, K.G.; Islam, N.; Ghavami, F.; Durant, C.; Durant, C.; Johnson, M. Effect of Increased Amounts of Fe, Zn, and Cd on Uptake, Translocation, and Accumulation of Human Health Related Micronutrients in Wheat. Asian J. Agric. food Sci. 2017, 5, 19. [PubMed]
75. Liu, P.; Xiao, W.; Wang, K.; Yang, Z.; Wang, L. Bioaccessibility of Cd and Its Correlation with Divalent Mineral Nutrients in Locally Grown Rice from Two Provinces in China. Biol. Trace Elem. Res. 2021, 200, 1408–1417. [CrossRef] [PubMed]
76. Boza, E.J.; Motamayor, J.C.; Amores, F.M.; Cedeño-Amador, S.; Tondo, C.L.; Livingstone, D.S.; Schnell, R.J.; Gutiérrez, O.A. Genetic Characterization of the Cacao Cultivar CCN 51: Its Impact and Significance on Global Cacao Improvement and Production. J. Am. Soc. Hortic. Sci. 2014, 139, 219–229. [CrossRef]
77. Cullen, J.T. On the Nonlinear Relationship between Dissolved Cadmium and Phosphate in the Modern Global Ocean: Could Chronic Iron Limitation of Phytoplankton Growth Cause the Kink? Limnol. Oceanogr. 2006, 51, 1369–1380. [CrossRef]
78. Caldelas, C.; Poitrasson, F.; Viers, J.; Araus, J. Stable Zn Isotopes Reveal the Uptake and Toxicity of Zinc Oxide Engineered Nanomaterials in Phragmites australis. Environ. Sci. Nano 2020, 7, 1927–1941. [CrossRef]
79. Jiang, Y.; Chen, X.; Chai, S.; Sheng, H.; Sha, L.; Fan, X.; Zeng, J.; Kang, H.; Zhang, H.; Xiao, X.; et al. TpIRT1 from Polish Wheat (Triticum polonicum L.) Enhances the Accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Sci. 2021, 312, 111058. [CrossRef] [PubMed]
80. Ullah, I.; Wang, Y.; Eide, D.J.; Dunwell, J.M. Evolution, and Functional Analysis of Natural Resistance -Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and Their Role in Cadmium Accumulation. Sci. Rep. 2018, 8, 14412. [CrossRef] [PubMed]
81. Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [CrossRef]
82. Dong, C.; He, F.; Berkowitz, O.; Liu, J.; Cao, P.; Tang, M.; Shi, H.; Wang, W.; Li, Q.; Shen, Z.; et al. Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (Oryza sativa). Plant Cell 2018, 30, 2267. [CrossRef]
83. He, F.; Liu, Q.; Zheng, L.; Cui, Y.; Shen, Z.; Zheng, L. RNA-seq Analysis of Rice Roots Reveals the Involvement of Post-Transcriptional Regulation in Response to Cadmium Stress. Front. Plant Sci. 2015, 6, 1136. [CrossRef] [PubMed]
84. Jian, M.; Zhang, D.; Wang, X.; Wei, S.; Zhao, Y.; Ding, Q.; Han, Y.; Ma, L. Differential Expression Pattern of the Proteome in Response to Cadmium Stress Based on Proteomics Analysis of Wheat Roots. BMC Genom. 2020, 21, 343. [CrossRef] [PubMed]
85. Chen, Y.; Weckwerth, W. Mass Spectrometry Untangles Plant Membrane Protein Signaling Networks. Trends Plant Sci. 2020, 25, 930–944. [CrossRef] [PubMed]
86. Yan, J.; Wang, P.; Wang, P.; Yang, M.; Lian, X.; Tang, Z.; Huang, C.-F.; Salt, D.E.; Zhao, F.J. A Loss-of-Function Allele of OsHMA3 Associated with High Cadmium Accumulation in Shoots and Grain of Japonica Rice Cultivars. Plant Cell Environ. 2016, 39, 1941–1954. [CrossRef] [PubMed]
87. Clemens, S. Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants. Biochimie 2006, 88, 1707–1719. [CrossRef]
88. Takahashi, R.; Ishimaru, Y.; Shimo, H.; Ogo, Y.; Senoura, T.; Nishizawa, N.K.; Nakanishi, H. The OsHMA2 Transporter Is Involved in Root-to-Shoot Translocation of Zn and Cd in Rice. Plant. Cell Environ. 2012, 35, 1948–1957. [CrossRef]
89. Andresen, E.; Peiter, E.; Küpper, H. Trace Metal Metabolism in Plants. J. Exp. Bot. 2018, 69, 909–954. [CrossRef University Staff: Request a correction | Centaur Editors: Update this record |