Sufficiency of Favard's condition for a class of band-dominated operators on the axisChandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283 and Lindner, M. (2008) Sufficiency of Favard's condition for a class of band-dominated operators on the axis. Journal of Functional Analysis, 254 (4). pp. 1146-1159. ISSN 0022-1236 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.jfa.2007.09.004 Abstract/SummaryThe purpose of this paper is to show that, for a large class of band-dominated operators on $\ell^\infty(Z,U)$, with $U$ being a complex Banach space, the injectivity of all limit operators of $A$ already implies their invertibility and the uniform boundedness of their inverses. The latter property is known to be equivalent to the invertibility at infinity of $A$, which, on the other hand, is often equivalent to the Fredholmness of $A$. As a consequence, for operators $A$ in the Wiener algebra, we can characterize the essential spectrum of $A$ on $\ell^p(Z,U)$, regardless of $p\in[1,\infty]$, as the union of point spectra of its limit operators considered as acting on $\ell^p(Z,U)$.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |