• Abraham ST, Zaya DN, Koenig WD, Ashley MV (2011) Interspecific and intraspecific pollination patterns of Valley Oak, Quercus lobata, in a mixed stand in Coastal Central California. Int. J Plant Sci 172(5): 691-699. https://doi.org/10.1086/659646
• Altintaş DU, Karakoç GB, Yilmaz M, Pinar M, Kendirli SG, Çakan H (2004) Relationship between pollen counts and weather variables in East-Mediterranean Coast of Turkey. Clin Dev Immunol 11: 87-96. https://doi.org/10.1080/10446670410001670544
• Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013) Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytol 200(4): 1260-1268. https://doi.org/10.1111/nph.12443
• Ashley MV (2021) Answers blowing in the Wind: A quarter century of genetic studies of pollination in oaks. Forests 12(5): 575. https://doi.org/10.3390/ f12050575
• Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9): 2408-2421. https://doi.org/10.1890/03-8024
• Bates D, Maechler M, Bolker B, Walker S (2024) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.35.3. https://cran.r-project.org/web/packages/lme4/index.html [accessed on 09.05.2024]
• Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol and Manag 301: 43–50. https://doi.org/10.1016/j.foreco.2012.09.018
• Boavida LC, Silva JP, Feijó JA (2001) Sexual reproduction in the cork oak (Quercus suber L.). II. Crossing intra- and interspecific barriers. Sex Plant Reprod 14: 143-152. https://doi.org/10.1007/s004970100100
• Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas P, Foest J, Lageard J, Hacket‐Pain A (2023) Reproductive collapse in European beech results from declining pollination efficiency in large trees. Glob Change Biol 29: 4595-4604. https://doi.org/10.1111/gcb.16730
• Bogdziewicz M, Szymkowiak J, Bonal R, Hacket-Pain A, Espelta JM, Pesendorfer M, Grewling L, Kasprzyk I, Belmonte J, Kluska K, De Linares C, Penuelas J, Fernandez-Martinez M (2020) What drives phenological synchrony? Warm springs advance and desynchronize flowering in oaks. Agric For Meteorol 294: 108140. https://doi.org/10.1016/j.agrformet.2020.108140
• Buiteveld J, Bakker EG, Bovenschenl J (2001) Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. Forest Genetics 8(4): 331–337. https:// doi/full/10.5555/20023101865
• Buschbom J, Yanbaev Y, Degen B (2011) Efficient long-distance gene flow into an isolated relict oak stand. J Hered 102(4): 464-472. https://doi.org/10.1093/jhered/esr023
• Clot B (2003) Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia 19: 227-234. https://doi.org/10.1023/B:AERO.0000006572.53105.17
• Craft KJ, Brown JS, Golubski AJ, Ashley MV (2009). A model for polyandry in oaks via female choice: a rigged lottery. Evol Ecol Res 11(3): 471-481.
• Craft KJ, Ashley MV (2010) Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae). Am J Bot 97(12): 1999-2006. https://doi.org/10.3732/ajb.0900390
• Crone EE, Lesica P (2006) Pollen and water limitation in Astragalus scaphoides, a plant that flowers in alternate years. Oecologia 150(1): 40-9. https://doi.org/10.1007/s00442-006-0506-0
• Crone EE, Miller E, Sala A (2009) How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast-seeding in a perennial wildflower. Ecol Lett. 12(11): 1119-26. https://doi.org/10.1111/j.1461-0248.2009.01365.x
• Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17(8): 361-369. https://doi.org/10.1016/S0169-5347(02)02540-5
• Dow BD, Ashley MV (1998a) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89(1): 62-70. https://doi.org/10.1093/jhered/89.1.62
• Dow BD, Ashley MV (1998b) Factors influencing male mating success in bur oak, Quercus macrocarpa. New For 15: 161-180. https://doi.org/10.1023/A:1006557904751
• Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S (2023) Oak masting drivers vary between populations depending on their climatic environments. Curr Biol 33(6): 1117-1124. https://doi.org/10.1016/j.cub.2023.01.034
• Fox J, Wiesberg S (2019) An R companion to applied regression third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/ [accessed on 09.05.2024]
• Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103(9): 1515-1527. https://doi.org/10.1093/aob/mcp035
• Geburek T, Hiess K, Litschauer R, Milasowszky N (2012) Temporal pollen pattern in temperate trees: expedience or fate? Oikos 121(10): 1603-1612. https://doi.org/10.1111/j.1600-0706.2011.20140.x
• Gehrig R (2006) The influence of the hot and dry summer 2003 on the pollen season in Switzerland. Aerobiologia 22: 27-34. https://doi.org/10.1007/s10453-005-9013-8
• Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197(1-3): 323-335. https://doi.org/10.1016/j.foreco.2004.05.023
• Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y (2014) Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 174(3): 679-87. https://doi.org/10.1007/s00442-013-2824-3
• Hartig F (2018) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models Version 0.4.6 https://cran.r-project.org/web/packages/DHARMa/index.html [accessed on 09.05.2024]
• Havens K, Delph LF (1996) Differential seed maturation uncouples fertilization and siring success in Oenothera organensis (Onagraceae). Heredity 76: 623-632. https://doi.org/10.1038/hdy.1996.89
• Hoch G, Siegwolf RT, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171: 653-662. https://doi.org/10.1007/s00442-012-2579-2
• Kalinganire A (2000) Floral structure, stigma receptivity and pollen viability in relation to protandry and self-incompatibility in Silky Oak (Grevillea robusta A. Cunn.). Ann Bot 86(1) 133-148. https://doi.org/10.1006/anbo.2000.1170
• Kelly D, Hart DE, Allen RB (2001) Evaluating the wind pollination benefits of mast seeding. Ecology 82(1): 117-126. https://doi.org/10.2307/2680090
• Kirby KJ, Bazely DR, Goldberg EA, Hall JE, Isted R, Perry SC, Thomas RC (2014) Changes in the tree and shrub layer of Wytham Woods (Southern England) 1974–2012: local and national trends compared. Forestry 87(5): 663-673. https://doi.org/10.1093/forestry/cpu026
• Knapp EE, Goedde MA, Rice KJ (2001) Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations. Oecologia 128(1): 48-55. https://doi.org/10.1007/s004420000623
• Knight TM, Steets JA, Ashman TL (2006) A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Am J Bot 93(2): 271-277. https://doi.org/10.3732/ajb.93.2.271
• Koenig WD, Knops JMH, Carmen WJ, Pearse IS (2015) What drives masting? The phenological synchrony hypothesis. Ecology 96(1): 184-192. https://doi.org/10.1890/14-0819.1
• Koenig WD, Knops JMH (2005) The mystery of masting in trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why? Am Sci. 93(4) 340-347. http://www.jstor.com/stable/27858609
• Kremer A, Hipp AL (2020) Oaks: an evolutionary success story. New Phytol 226(4): 987-1011. https://doi.org/10.1111/nph.16274
• Leimu R, Mutikainen PIA, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94(5): 942-952. https://doi.org/10.1111/j.1365-2745.2006.01150.x
• Lenth RV (2018) emmeans: Estimated marginal means, aka least-square means. R package version 1.10.1. https://CRAN.R-project.org/package=emmeans [accessed on 09.05.2024]
• Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15: 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
• Mitchell RJ, Bellamy PE, Ellis CJ, Hewison RL, Hodgetts NG, Iason GR, Littlewood NA, Newey S, Stockan JA, Taylor AFS (2019) OakEcol: A database of oak-associated biodiversity within the UK. Data Brief 25: 104120. https://doi.org/10.1016/j.dib.2019.104120
• Moracho E, Moreno G, Jordano P, Hampe A (2016) Unusually limited pollen dispersal and connectivity of Pedunculate oak (Quercus robur) refugial populations at the species’ southern range margin. Mol Ecol 25(14): 3319-31. https://doi.org/10.1111/mec.13692
• Oyama K, Herrera-Arroyo ML, Rocha-Ramírez V, Benítez-Malvido J, Ruiz-Sánchez E, González-Rodríguez A (2017). Gene flow interruption in a recently human-modified landscape: The value of isolated trees for the maintenance of genetic diversity in a Mexican endemic red oak. For Ecol Manag 390: 27-35. https://doi.org/10.1016/j.foreco.2017.01.018
• Pearse IS, Koenig WD, Funk KA, Pesendorfer MB (2015) Pollen limitation and flower abortion in a wind-pollinated, masting tree. Ecology 96(2): 587-593. https://doi.org/10.1890/14-0297.1
• Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol 212(3): 546-562. https://doi.org/10.1111/nph.14114
• R Core Team (2021) R: A language and environment for statistical computing. Version 4.1.1 R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [accessed on 09.05.2024]
• Roussel G (2011) Practical controlled crossing technique on European white oaks, Translated by Harris BRC in 2021. https://quercusportal.pierroton.inrae.fr/index.php?p=TECHNIQUES [accessed on 19.01.2021].
• Satake A, Iwasa Y (2000) Pollen Coupling of Forest Trees: Forming Synchronized and Periodic Reproduction out of Chaos. J Theor Biol 203(2): 63-84. https://doi.org/10.1006/jtbi.1999.1066
• Schermer É, Bel‐Venner M, Fouchet D, Siberchicot A, Boulanger V, Caignard T, Thibaudon M, Oliver G, Nicolas M, Gaillard J, Delzon S, Venner S (2019) Pollen limitation as a main driver of fruiting dynamics in oak populations. Ecol Lett 22(1): 98-107. https://doi.org/10.1111/ele.13171
• Smith CC, Hamrick JL, Kramer CL (1990) The advantage of mast years for wind pollination. Am Nat 136(2): 154-166. https://doi.org/10.1086/285089
• Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, De Weger LA, Willems R (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19: 171-184. https://doi.org/10.1023/B:AERO.0000006528.37447.15
• Stairs GR (1964) Microsporogenesis and embryogenesis in Quercus. Bot Gaz 125(2): 115-121. https://doi.org/10.1086/336255
• Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12(1): 253-279. https://doi.org/10.1146/annurev.es.12.110181.001345
• Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8(5): 831-841. https://doi.org/10.1046/j.1365-294X.1999.00637.x
• Thompson ID, Okabe K, Parrotta JA, Brockerhoff E, Jactel H, Forrester DI, Taki H (2014) Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodivers Conserv 23: 2613–2635. https://doi.org/10.1007/s10531-014-0736-
• Thomson JD (2001) Using pollination deficits to infer pollinator declines: can theory guide us? Conserv Ecol 5(1): 1-8. https://www.jstor.org/stable/26271800
• Tsuruta M, Kato S, Mukai Y (2011) Timing of premature acorn abortion in Quercus serrata Thunb. is related to mating pattern, fruit size, and internal fruit development. J For Res 16(6): 492-499. https://doi.org/10.1007/s10310-010-0240-7
• van Doorn WG (1997) Effects of pollination on floral attraction and longevity. J Exp Bot 48(9): 1615-1622. https://doi.org/10.1093/jxb/48.9.1615
• Venner S, Siberchicot A, Pélisson PF, Schermer E, Bel-Venner MC, Nicolas M, Débias F, Miele V, Sauzet S, Boulanger V (2016) Fruiting strategies of perennial plants: a resource budget model to couple mast seeding to pollination efficiency and resource allocation strategies. Am Nat 188(1): 66-75. https://doi.org/10.1086/686684
• Vranckx G, Mergeay J, Cox K, Muys B, Jacquemyn H, Honnay O (2014) Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). For Ecol Manag. 328: 254-261. https://doi.org/10.1016/j.foreco.2014.05.044
• Yacine A, Bouras F (1997) Self- and cross-pollination effects on pollen tube growth and seed set in holm oak Quercus ilex L. (Fagaceae). Ann For Sci 54(5): 447-462. https://doi.org/10.1051/forest:19970503