Amsalem, L., Freeman, S., Rav-David, D., Nitzani, Y., Sztejnberg, A., Pertot, I., et al. (2006). Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f. sp. fragariae on strawberry. Eur. J. Plant Pathol. 114, 283–292. doi: 10.1007/s10658-005-5804-6
Asalf, B., Gadoury, D. M., Tronsmo, A. M., Seem, R. C., Cadle-Davidson, L., Brewer, M. T., et al. (2013). Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Phytopathology 103, 717–724. doi: 10.1094/PHYTO-09-12-0252-R
Bassil, N. V., Davis, T. M., Zhang, H., Ficklin, S., Mittmann, M., Webster, T., et al. (2015). Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics 16, 1–30. doi: 10.1186/s12864-015-1310-1
Bates, D., Maechler, M., Bolker, B., Walker, S., Haubo, R., Christensen, B., et al. (2009). R Package ‘lme4.’.
Belkhadir, Y., Subramaniam, R., Dangl, J. L. (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7, 391–399. doi: 10.1016/j.pbi.2004.05.009
Berrie, A., Xu, X. (2021). Developing biopesticide-based programmes for managing powdery mildew in protected strawberries in the UK. Crop Prot. 149, 105766. doi: 10.1016/j.cropro.2021.105766
Binagwa, P. H., Traore, S. M., Egnin, M., Bernard, G. C., Ritte, I., Mortley, D., et al. (2021). Genome-wide identification of powdery mildew resistance in common bean (Phaseolus vulgaris L.). Front. Genet. 12. doi: 10.3389/fgene.2021.673069
Blanco, C., de los Santos, B., Barrau, C., Arroyo, F. T., Porras, M., Romero, F., et al. (2004). Relationship among concentrations of Sphaerotheca macularis conidia in the air, environmental conditions, and the incidence of powdery mildew in strawberry. Plant Dis. 88, 878–881. doi: 10.1094/PDIS.2004.88.8.878
Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., et al. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705. doi: 10.1016/S0092-8674(00)81912-1
Caffier, V., Laurens, F. (2005). Breakdown of Pl2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Pathol. 54, 116–124. doi: 10.1111/j.1365-3059.2005.01147.x
Carisse, O., Morissette-Thomas, V., van der Heyden, H. (2013). Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Phytopathology 103, 811–821. doi: 10.1094/PHYTO-11-12-0300-R
Cockerton, H. M., Karlström, A., Johnson, A. W., Li, B., Stavridou, E., Hopson, K. J., et al. (2021). Genomic informed breeding strategies for strawberry yield and fruit quality traits. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.724847
Cockerton, H. M., Li, B., Vickerstaff, R. J., Eyre, C. A., Sargent, D. J., Armitage, A. D., et al. (2019). Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00924
Cockerton, H. M., Vickerstaff, R. J., Karlström, A., Wilson, F., Sobczyk, M., He, J. Q., et al. (2018). Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa). Theor. Appl. Genet. 131, 1995–2007. doi: 10.1007/s00122-018-3128-0
Cui, H., Fan, C., Ding, Z., Wang, X., Tang, L., Bi, Y., et al. (2022). CmPMRl and CmPMrs are responsible for resistance to powdery mildew caused by Podosphaera xanthii race 1 in melon. Theor. Appl. Genet. 135, 1209–1222. doi: 10.1007/s00122-021-04025-4
Dangl, J. L., Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 862–833. doi: 10.1038/35081161
Davik, J., Honne, B. I. (2005). Genetic variance and breeding values for resistance to a wind-borne disease [Sphaerotheca macularis (Wallr. ex Fr.)] in strawberry (Fragaria x ananassa Duch.) estimated by exploring mixed and spatial models and pedigree information. Theor. Appl. Genet. 111, 256–264. doi: 10.1007/s00122-005-2019-3
de Mendiburu, F., de Mendiburu, M. F. (2019). A’gricolae’." R Package, version 1.3.
Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4, 250–255. doi: 10.3835/plantgenome2011.08.0024
Feng, J., Cheng, Y., Zheng, C. (2020). Expression patterns of octoploid strawberry TGA genes reveal a potential role in response to Podosphaera aphanis infection. Plant Biotechnol. Rep. 14, 55–67. doi: 10.1007/s11816-019-00582-9
Fondevilla, S., Rubiales, D. (2012). Powdery mildew control in pea. A review. Agron. Sustain Dev. 32, 401–409. doi: 10.1007/s13593-011-0033-1
Gadoury, D. M., Asalf, B., Heidenreich, M. C., Herrero, M. L., Welser, M. J., Seem, R. C., et al. (2010). Initiation, development, and survival of cleistothecia of Podosphaera aphanis and their role in the epidemiology of strawberry powdery mildew. Phytopathology 100, 246–251. doi: 10.1094/PHYTO-100-3-0246
Goyal, N., Bhatia, G., Sharma, S., Garewal, N., Upadhyay, A., Upadhyay, S. K., et al. (2020). Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 112, 312–322. doi: 10.1016/j.ygeno.2019.02.011
Granato, I. S., Galli, G., de Oliveira Couto, E. G., e Souza, M. B., Mendonça, L. F., Fritsche-Neto, R. (2018). snpReady: a tool to assist breeders in genomic analysis. Mol. Breed. 38, 1–7. doi: 10.1007/s11032-018-0844-8
Hamblin, M. T., Buckler, E. S., Jannink, J. L. (2011). Population genetics of genomics-based crop improvement methods. Trends Genet. 27, 98–106. doi: 10.1016/j.tig.2010.12.003
Havill, J. S., Richardson, B. J., Rohwer, C. L., Gent, D. H., Henning, J. A., Muehlbauer, G. J. (2023). Identification of quantitative trait loci associated with R1-mediated resistance to powdery mildew and sex determination in hop (Humulus lupulus L.). Theor. Appl. Genet. 136, 154. doi: 10.1007/s00122-023-04399-7
Hibberd, J. M., Richardson, P., Whitbread, R., Farrar, J. F. (1996). Effects of leaf age, basal meristem and infection with powdery mildew on photosynthesis in barley grown in 700 μmol mol-1 CO2. New Phytol. 134, 317–325. doi: 10.1111/j.1469-8137.1996.tb04636.x
Jambagi, S., Dunwell, J. M. (2017). Identification and expression analysis of Fragaria vesca MLO genes involved in interaction with powdery mildew (Podosphaera aphanis). J. Adv. Plant Biol. 1, 40–54. doi: 10.14302/issn.2638-4469
Jiménez, N. P., Feldmann, M. J., Famula, R. A., Pincot, D. D. A., Bjornson, M., Cole, G. S., et al. (2023). Harnessing underutilized gene bank diversity and genomic prediction of cross usefulness to enhance resistance to Phytophthora cactorum in strawberry. Plant Genome 16, e20275. doi: 10.1002/tpg2.20275
Jin, X., Hall, A. M. (2017). “Integrated control of strawberry powdery mildew,” in ISHS Acta Horticulturae 1156: VIII International Strawberry Symposium. 771–775.
Jørgensen, I.H. (1992). Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152. doi: 10.1007/BF00023919
Karn, A., Zou, C., Brooks, S., Fresnedo-Ramírez, J., Gabler, F., Sun, Q., et al. (2021). Discovery of the REN11 locus from Vitis aestivalis for stable resistance to grapevine powdery mildew in a family segregating for several unstable and tissue-specific quantitative resistance loci. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.733899
Kennedy, C., Hasing, T. N., Peres, N. A., Whitaker, V. M. (2013). Evaluation of strawberry species and cultivars for powdery mildew resistance in open-field and high tunnel production systems. Hortic. Sci. 48, 1125–1129. doi: 10.21273/HORTSCI.48.9.1125
Lindhout, P. (2002). The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124, 217–226. doi: 10.1023/A:1015686601404
Menzel, C. M. (2022). A review of powdery mildew in strawberries: the resistance of species, hybrids and cultivars to the pathogen is highly variable within and across studies with no standard method for assessing the disease. J. Hortic. Sci. Biotechnol. 97, 273–297. doi: 10.1080/14620316.2021.1985402
Nam, M.-H., Jeon, Y.-N., Lee, H.-C., Lee, H.-D., Kang, H.-K. (2012). Comparative analysis between healthy and powdery mildew-infected plants of strawberry cultivar Seolhyang. Res. Plant Dis. 18, 80–85. doi: 10.5423/RPD.2012.18.2.080
Nellist, C. F. (2018). “Disease resistance in polyploid strawberry,” in The Genomes of Rosaceous Berries and Their Wild Relatives. Eds. Hytönen, T., Graham, J., Harrison, R. (Cham: Springer), 79–94.
Nelson, M. D., Gubler, W. D., Shaw, D. V. (1995). Inheritance of powdery mildew resistance in greenhouse-grown versus field-grown California strawberry progenies. Phytopathology 85, 421–424. doi: 10.1094/Phyto-85-421
Nelson, M. D., Gubler, W. D., Shaw, D. V. (1996). Relative resistance of 47 strawberry cultivars to powdery mildew in California greenhouse and field environments. Am. Phytopathological Soc. 80, 326–328. doi: 10.1094/PD-80-0326
Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theor. Appl. Genet. 113, 809–819. doi: 10.1007/s00122-006-0333-z
Olmstead, J. W., Lang, G. A. (2002). Pmr1, a gene for resistance to powdery mildew in sweet cherry. Resour. Hortscience 37, 1098–1099. doi: 10.21273/HORTSCI.37.7.1098
Palloix, A., Ayme, V., Moury, B. (2009). Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence, and consequences for breeding strategies. New Phytol. 183, 190–199. doi: 10.1111/j.1469-8137.2009.02827.x
Palmer, S. (2007). Strawberry powdery mildew: epidemiology and the effect of host nutrition on disease. Adelaide, South Australia: University of Adelaide.
Palmer, M. G., Holmes, G. J. (2022). Characterization of strawberry host plant resistance to powdery mildew caused by Podosphaera aphanis. Plant Health Prog. 23, 82–86. doi: 10.1094/PHP-12-20-0107-RS
Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R. G. F., Bai, Y., et al. (2014). Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15, 1–12. doi: 10.1186/1471-2164-15-618/TABLES/5
Pincot, D. D. A., Feldmann, M. J., Hardigan, M. A., Vachev, M. V., Henry, P. M., Gordon, T. R., et al. (2022). Novel Fusarium wilt resistance genes uncovered in natural and cultivated strawberry populations are found on three non-homoeologous chromosomes. Theor. Appl. Genet. 135, 2121–2145. doi: 10.1007/s00122-022-04102-2
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795
Quinlan, A. R., Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. doi: 10.1093/bioinformatics/btq033
Rajaraman, J., Douchkov, D., Hensel, G., Stefanato, F. L., Gordon, A., Ereful, N., et al. (2016). An LRR/Malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01836
Rodríguez-Álvarez, M. X., Boer, M. P., van Eeuwijk, F. A., Eilers, P. H. C. (2018). Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spat Stat. 23, 52–71. doi: 10.1016/j.spasta.2017.10.003
Sargent, D. J., Buti, M., Šurbanovski, N., Brurberg, M. B., Alsheikh, M., Kent, M. P., et al. (2019). Identification of QTLs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. Sp. Fragariae) susceptibility in cultivated strawberry (Fragaria ×ananassa). PloS One 14, e0222829. doi: 10.1371/journal.pone.0222829
Simpson, D. W. (1987). The inheritance of mildew resistance in everbearing and day-neutral strawberry seedlings. J. Hortic. Sci. 62, 329–334. doi: 10.1080/14620316.1987.11515788
Sobczyk, M., Harrison, R. (2023) gwas_quantitative_pipeline. Available online at: https://github.com/harrisonlab/popgen/blob/master/snp/gwas_quantitative_pipeline.md.
Sombardier, A., Dufour, M. C., Blancard, D., Corio-Costet, M. F. (2010). Sensitivity of Podosphaera aphanis isolates to DMI fungicides: Distribution and reduced cross-sensitivity. Pest Manag Sci. 66, 35–43. doi: 10.1002/ps.1827
Soriano, J. M., Madduri, M., Schaart, J. G., van der Burgh, A., van Kaauwen, M. P. W., Tomic, L., et al. (2014). Fine mapping of the gene Rvi18 (V25) for broad-spectrum resistance to apple scab, and development of a linked SSR marker suitable for marker-assisted breeding. Mol. Breed. 34, 2021–2032. doi: 10.1007/s11032-014-0159-3
CrossRef Full Text | Google Scholar
Takamatsu, S. (2013). Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience 54, 75–86. doi: 10.1016/j.myc.2012.08.004
Tapia, R., Osorio, L. F., Verma, S., Lee, S., Whitaker, V. M. (2021). Genome-wide prediction of powdery mildew resistance in the octoploid strawberry. ISHS Acta Hortic. 1309, 101–106. doi: 10.17660/ActaHortic.2021.1309.16
Verma, S., Bassil, N. V., Van De Weg, E., Harrison, R. J., Monfort, A., Hidalgo, J. M., et al. (2017). Development and evaluation of the Axiom® IStraw35 384HT array for the allo-octoploid cultivated strawberry Fragaria ×ananassa. Acta Hortic. 1156, 75–81. doi: 10.17660/ActaHortic.2017.1156.10
Wang, J., Li, Y., Xu, F., Xu, H., Han, Z., Liu, L., et al. (2022). Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC Plant Biol. 22, 83. doi: 10.1186/s12870-022-03448-5
Xavier, A., Muir, W. M., Rainey, K. M. (2020). bWGR: Bayesian whole-genome regression. Bioinformatics 36, 1957–1959. doi: 10.1093/bioinformatics/btz794
Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., et al. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714–724. doi: 10.1111/tpj.13599
Zhang, R., Sun, B., Chen, J., Cao, A., Xing, L., Feng, Y., et al. (2016). Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor. Appl. Genet. 129, 1975–1984. doi: 10.1007/s00122-016-2753-8