Accessibility navigation


Reconstructing burnt area during the Holocene: an Iberian case study.

Shen, Y., Sweeney, L., Liu, M., Lopez Saez, J. A., Perez-Diaz, S., Luelmo-Lautenschlaeger, R., Gil-Romera, G., Hoefer, D., Jiménez-Moreno, G., Schneider, H., Prentice, I. C. and Harrison, S. (2022) Reconstructing burnt area during the Holocene: an Iberian case study. Climate of the Past, 18 (5). pp. 1189-1201. ISSN 1814-9332

[img] Text (Open Access) - Published Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.
· Available under License Creative Commons Attribution.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/cp-18-1189-2022

Abstract/Summary

Charcoal accumulated in lake, bog or other anoxic sediments through time has been used to document the geographical patterns in changes in fire regimes. Such reconstructions are useful to explore the impact of climate and vegetation changes on fire during periods when human influence was less prevalent than today. However, charcoal records only provide semi-quantitative estimates of change in biomass burning. Here we derive quantitative estimates of burnt area from vegetation data in two stages. First, we relate the modern charcoal abundance to burnt area using a conversion factor derived from a generalised linear model of burnt area probability based on eight environmental predictors. Then, we establish the relationship between fossil pollen assemblages and burnt area using tolerance-weighted weighted averaging partial least-squares regression with a sampling frequency correction (fxTWA-PLS). We test this approach using the Iberian Peninsula as a case study because it is a fire-prone region with abundant pollen and charcoal records covering the Holocene. We derive the vegetation–burnt area relationship using the 31 records that have both modern and fossil charcoal and pollen data and then reconstruct palaeoburnt area for the 113 records with Holocene pollen records. The pollen data predict charcoal-derived burnt area relatively well (R2 = 0.44), and the changes in reconstructed burnt area are synchronous with known climate changes through the Holocene. This new method opens up the possibility of reconstructing changes in fire regimes quantitatively from pollen records, after regional calibration of the vegetation–burnt area relationship, in regions where pollen records are more abundant than charcoal records.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:117127
Publisher:European Geosciences Union

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation