Accessibility navigation


Plant silicon defences suppress herbivore performance, but mode of feeding is key

Johnson, S. N., Waterman, J. M., Hartley, S. E., Cooke, J., Ryalls, J. ORCID: https://orcid.org/0000-0003-2015-3605, Lagisz, M. and Nakagawa, S. (2024) Plant silicon defences suppress herbivore performance, but mode of feeding is key. Ecology Letters. ISSN 1461-0248 (In Press)

[img] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/ele.14519

Abstract/Summary

The performance of herbivorous animals depends on the nutritional and defensive traits of the plants they consume. The uptake and deposition of biogenic silicon in plant tissues is arguably the most basic and ubiquitous anti-herbivore defence used by plants, especially the grasses. We conducted meta-analyses of 150 studies reporting how vertebrate and invertebrate herbivores performed when feeding on silicon-rich plants relative to those feeding on low silicon plants. Silicon levels were 52% higher and 32% more variable in silicon-rich plants compared to plants with low silicon, which resulted in an overall 33% decline in herbivore performance. Fluid-feeding herbivore performance was less adversely impacted (–14%) than tissue-chewing herbivores, including mammals (–45%), chewing arthropods (–32%) and plant-boring arthropods (–39%). Fluid-feeding arthropods with a wide diet breadth or those feeding on perennial plant species were mostly unaffected by silicon defences. Unlike many other plant defences, where diet specialisation often helps herbivores overcome their effects, silicon negatively impacted chewing herbivores regardless of diet breath. We conclude that silicon defences primarily target chewing herbivores and impact vertebrate and invertebrate herbivores to a similar degree.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Sustainable Land Management > Centre for Agri-environmental Research (CAER)
ID Code:117326
Publisher:Wiley

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation