Accessibility navigation


A simple conceptual model for predicting the dissolution of phosphate rock in soils

Robinson, J. S. ORCID: https://orcid.org/0000-0003-1045-4412, Syers, J. K. and Bolan, N. S. (1994) A simple conceptual model for predicting the dissolution of phosphate rock in soils. Journal of the Science of Food and Agriculture, 64 (4). pp. 397-403. ISSN 0022-5142

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/jsfa.2740640402

Abstract/Summary

Laboratory experimental and literature data were integrated to develop a simple, conceptual model to describe and predict the dissolution of a reactive phosphate rock (Gafsa phosphate rock, GPR) in soils. The model showed that initial solution Ca concentration strongly influences the time required for a single application of GPR (at 30 kgP ha−1) to dissolve. The model predicts that all of the GPR will dissolve within a year of application in an unlimed, acid (pHw 4.5) loam. However, if the soil has previously been limed to (pHw 5.8, and contains permanent charge only, the model predicts that only about 50% of the GPR would have dissolved by the end of the second year after application. On the other hand, if a previously limed soil ((pHw 5.8) contains variable-charge components, the model predicts that virtually all of the GPR would have dissolved in this soil by the end of the second year after application. These results emphasise that, even in the presence of a high proton supply, solution Ca has an overriding influence on the dissolution of GPR. The faster rate of GPR dissolution in the limed soil with variable charge, compared to that in the limed soil with permanent charge only, demonstrates the ability of the variable-charge component of soil to act as a sink for some of the lime-derived Ca. According to the solubility product principle, this allows more GPR to dissolve. Because of the generally stronger buffering of soil for P than for Ca, a relatively large proportion of any P removed by leaching and plant uptake is buffered by the sorbed phase. Consequently, the influence of leaching and plant uptake on GPR dissolution is attributed primarily to the removal of the relatively less-strongly buffered Ca.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:119288
Publisher:Wiley

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation