Prolonged heat stress in Brassica napus during flowering negatively impacts yield and alters glucosinolate and sugars metabolism
Kourani, M., Anastasiadi, M., Hammond, J. P.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3389/fpls.2025.1507338 Abstract/SummaryOilseed rape ( Brassica napus ), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |