Sustainable and available sources of omega-3 fatty acids for health: Are the current dietary recommendations, food sources and legislation fit for purpose?
Lewis, E., Steenson, S., Haslam, R.P., McDonald, E., Sharman, M., Traka, M., Stanton, A., Napier, J.A., Sweeting, A., Saleh, R.N.M., Hornberger, M., Givens, D.I.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1017/S0954422425100127 Abstract/SummaryThe health benefits of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been known for over 50 years and underpin the UK population recommendation to consume > 450 mg EPA+DHA per day. These recommendations, last revised in 2004, are based mainly on epidemiological evidence. Much research has been conducted in the interim. Most RCTs use doses of EPA+DHA of 840 mg per day or more. For anti-inflammatory, triglyceride lowering and anti-hypertensive effects, > 1.5 g EPA+DHA per day is needed. Cognitive benefits are also likely to require these higher intakes. Farmed salmon now contains considerably less EPA+DHA relative to wild-fish, and relative to farmed fish of 20 years ago, meaning one portion per week will no longer provide the equivalent of 450 mg EPA+DHA per day. Oily fish alone can only provide a fraction of the EPA+DHA required to meet global needs. Furthermore, there is low global oily fish consumption, with typical intakes of < 200 mg EPA+DHA per day, and limited intakes in vegans and vegetarians. Therefore, there is an urgent need for affordable, acceptable, alternative EPA+DHA sources, including vegan/vegetarian friendly options, such as bio-enriched poultry, red meat and milk products; fortified foods; enriched oilseeds e.g. genetically modified Camelina sativa; algae and algal oils; and approaches which enhance endogenous EPA/DHA synthesis. In this narrative review we suggest that current EPA+DHA intake recommendations are too low, consider EPA/DHA from a holistic health-sustainability perspective, and identify research, policy and knowledge mobilisation areas which need attention.
1. Zhang Y, Zhuang P, He W, Chen JN, Wang WQ, Freedman ND, et al. Association of fish and long-chain omega-3 fatty acids intakes with total and cause-specific mortality: prospective analysis of 421 309 individuals. J Intern Med. 2018;284(4):399-417.
2. Saleh RNM, Minihane AM. Fish, n-3 fatty acids, cognition and dementia risk: not just a fishy tale. Proc Nutr Soc. 2022;81(1):27-40.
3. Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, et al. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity- a double blind, randomised clinical trial. EBioMedicine. 2022;77:103909.
4. Musazadeh V, Karimi A, Malekahmadi M, Ahrabi SS, Dehghan P. Omega-3 polyunsaturated fatty acids in the treatment of non-alcoholic fatty liver disease: An umbrella systematic review and meta-analysis. Clin Exp Pharmacol Physiol. 2023;50(5):327-34.
5. Khalili L, Valdes-Ramos R, Harbige LS. Effect of n-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites. 2021;11(11).
6. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-72.
7. Calder PC. Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc Nutr Soc. 2018;77(1):52-72.
8. Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wootton SA. Effect of altered dietary903 n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C] alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr. 905 2003;90(2):311-21.
9.Givens D.I. Gibbs RA. Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them. Proc Nutr Soc. 2008;67(3):273-80.
10. Schulze MB, Minihane AM, Saleh RNM, Risérus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol. 2020;8(11):915-30.
11. Harris WS, Tintle NL, Imamura F, Qian F, Korat AVA, Marklund M, et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat Commun. 2021;12(1):2329.
12. AbuMweis S, Jew S, Tayyem R, Agraib L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: a meta-analysis of randomised placebo-control human clinical trials. J Hum Nutr Diet. 2018;31(1):67-84.
13. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197(1):12-24.
14. Innes JK, Calder PC. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An update for 2020. Int J Mol Sci. 2020;21(4).
15. Bowman L, Mafham M, Stevens W, Haynes R, Aung T, Chen F, et al. ASCEND: A Study of Cardiovascular Events in Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15,480 people with diabetes. Am Heart J. 2018;198:135-44.
16. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med. 2019;380(1):23-32.
17. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular Risk Reduction with Icosapent ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22.
18. Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc. 2019;8(19):e013543.
19. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;3(3):Cd003177.
20. ARUK. Alzheimers Research UK: Dementia Statistics HUB [Available from: https://dementiastatistics.org/.
21. Woloshin S, Kesselheim AS. What to Know About the Alzheimer Drug Aducanumab (Aduhelm). JAMA Intern Med. 2022;182(8):892.
22. de Roos A, van der Grond J, Mitchell G, Westenberg J. Magnetic Resonance Imaging of Cardiovascular Function and the Brain: Is Dementia a Cardiovascular-Driven Disease?
Circulation. 2017;135(22):2178-95.
23. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021;24(9):1198-209.
24. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83(6 Suppl):1467s-76s.
25. Pontifex M, Vauzour D, Minihane AM. The effect of APOE genotype on Alzheimer's disease risk is influenced by sex and docosahexaenoic acid status. Neurobiol Aging. 2018;69:209-20.
26. Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Layé S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain
Behav Immun. 2020;85:21-8.
27. Satizabal CL, Himali JJ, Beiser AS, Ramachandran V, Melo van Lent D, Himali D, et
al. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology. 2022;99(23):e2572-82.
28. Wei BZ, Li L, Dong CW, Tan CC, Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr. 2023;117(6):1096-109.
29. Vauzour D, Scholey A, White DJ, Cohen NJ, Cassidy A, Gillings R, et al. A combined DHA-rich fish oil and cocoa flavanols intervention does not improve cognition or
brain structure in older adults with memory complaints: results from the CANN randomized, controlled parallel-design study. Am J Clin Nutr. 2023;118(2):369-81.
30. Yassine HN, Samieri C, Livingston G, Glass K, Wagner M, Tangney C, et al. Nutrition state of science and dementia prevention: recommendations of the Nutrition for
Dementia Prevention Working Group. Lancet Healthy Longev. 2022;3(7):e501-e12
31. Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16(5):377-89.
32. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama. 2010;304(17):1903-11.
33. Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;4(4):Cd009002.
34. Suh SW, Lim E, Burm SY, Lee H, Bae JB, Han JW, Kim KW. The influence of n-3 polyunsaturated fatty acids on cognitive function in individuals without dementia: a systematic review and dose-response meta-analysis. BMC Med. 2024;22(1):109.
35. Stonehouse W, Conlon CA, Podd J, Hill SR, Minihane AM, Haskell C, Kennedy D. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr. 2013;97(5):1134-43.
36. Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, et al. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid,
improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr. 2021;114(3):914-24.
37. Gong J, Rosner B, Rees DG, Berson EL, Weigel-DiFranco CA, Schaefer EJ. Plasma docosahexaenoic acid levels in various genetic forms of retinitis pigmentosa. Invest
Ophthalmol Vis Sci. 1992;33(9):2596-602.
38. Schaefer EJ, Robins SJ, Patton GM, Sandberg MA, Weigel-DiFranco CA, Rosner B, Berson EL. Red blood cell membrane phosphatidylethanolamine fatty acid content in various
forms of retinitis pigmentosa. J Lipid Res. 1995;36(7):1427-33.
39. Hodge WG, Barnes D, Schachter HM, Pan YI, Lowcock EC, Zhang L, et al. The evidence for efficacy of omega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can J Ophthalmol. 2006;41(4):481-90.
40. Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol. 2008;126(6):826-33
41. Miljanović B, Trivedi KA, Dana MR, Gilbard JP, Buring JE, Schaumberg DA.
Relation between dietary n-3 and n-6 fatty acids and clinically diagnosed dry eye syndrome in women. Am J Clin Nutr. 2005;82(4):887-93.
42. Dionysopoulos G, Kalopitas G, Vadarlis A, Bakaloudi DR, Gkiourtzis N, Karanika E, et al. Can omega-3 fatty acids be beneficial in pediatric NAFLD? A systematic review and
meta-analysis. Crit Rev Food Sci Nutr. 2022:1-9.
43. Moore E, Patanwala I, Jafari A, Davies IG, Kirwan RP, Newson L, et al. A systematic review and meta-analysis of randomized controlled trials to evaluate plant-based omega-3
polyunsaturated fatty acids in nonalcoholic fatty liver disease patient biomarkers and parameters. Nutr Rev. 2024;82(2):143-65.
44. Spooner MH, Jump DB. Nonalcoholic Fatty Liver Disease and Omega-3 Fatty Acids: Mechanisms and Clinical Use. Annu Rev Nutr. 2023;43:199-223.
45. Calder PC. n-3 PUFA and inflammation: from membrane to nucleus and from bench to bedside. Proc Nutr Soc. 2020:1-13.
46. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation. 2002;105(7):804-9.
47. Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, et al. Dysregulation of Subcutaneous White Adipose Tissue Inflammatory Environment Modelling in Non-Insulin Resistant Obesity and Responses to Omega-3 Fatty Acids - A Double Blind, Randomised Clinical Trial. Front Immunol. 2022;13:922654.
48. Albert BB, Cameron-Smith D, Hofman PL, Cutfield WS. Oxidation of marine omega�3 supplements and human health. Biomed Res Int. 2013;2013:464921.
49. Maki KC, Dicklin MR. Strategies to improve bioavailability of omega-3 fatty acids from ethyl ester concentrates. Curr Opin Clin Nutr Metab Care. 2019;22(2):116-23.
50. Schuchardt JP, Neubronner J, Kressel G, Merkel M, von Schacky C, Hahn A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters
lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: Results from a six
month randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2011;85(6):381-6.
51. Bandarra NM, Lopes PA, Martins SV, Ferreira J, Alfaia CM, Rolo EA, et al. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters. Nutr Res. 2016;36(5):452-63.
52. von Schacky C. Omega-3 fatty acids in cardiovascular disease--an uphill battle. Prostaglandins Leukot Essent Fatty Acids. 2015;92:41-7.
53. Iwao T, Takata F, Matsumoto J, Aridome H, Yasunaga M, Yokoya M, et al. Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice.
PLoS One. 2023;18(2):e0281946.
54. Arellanes IC, Choe N, Solomon V, He X, Kavin B, Martinez AE, et al. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine. 2020;59:102883.
55. Martinsen A, Tejera N, Vauzour D, Harden G, Dick J, Shinde S, et al. Altered SPMs and age-associated decrease in brain DHA in APOE4 female mice. Faseb j. 2019;33(9):10315-26.
56. Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, et al. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. Faseb j. 2021;35(5):e21583.
57. Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020;41(40):3925-32.
58. Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T. 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer's disease. Alzheimers Dement. 2021;17(1):29-40.
59. Arabi SM, Bahari H, Chambari M, Bahrami LS, Mohaildeen Gubari MI, Watts GF, Sahebkar A. Omega-3 fatty acids and endothelial function: A GRADE-assessed systematic
review and meta-analysis. Eur J Clin Invest. 024;54(2):e14109.
60. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J
Clin Nutr. 2008;88(3):618-29.
61. Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, et al. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron
emission tomography. J Lipid Res. 2009;50(7):1259-68.
62. Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer's
disease (LipiDiDiet): a randomised, double-blind, controlled trial. Lancet Neurol. 2017;16(12):965-75.
63. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Bmj. 2010;340:c332
64. Tulka S, Geis B, Baulig C, Knippschild S, Krummenauer F. Validity of sample sizes in publications of randomised controlled trials on the treatment of age-related macular
degeneration: cross-sectional evaluation. BMJ Open. 2019;9(10):e030312.
65. Burback D, Molnar FJ, St John P, Man-Son-Hing M. Key methodological features of randomized controlled trials of Alzheimer's disease therapy. Minimal clinically important
difference, sample size and trial duration. Dement Geriatr Cogn Disord. 1999;10(6):534-40.
66. Brookmeyer R, Abdalla N. Design and sample size considerations for Alzheimer's disease prevention trials using multistate models. Clin Trials. 2019;16(2):111-9.
67. Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol. 2008;59:537-63.
68. Gafari O, Bahrami-Hessari M, Norton J, Parmar R, Hudson M, Ndegwa L, et al. Building trust and increasing inclusion in public health research: co-produced strategies for
engaging UK ethnic minority communities in research. Public Health. 2024;233:90-9.
69. SACN. Advice on fish consumption:benefits & risks. In: Health FSAatDo, editor. Norwich, UK: The Stationary Office (TSO); 2004.
70. ISSFAL. International Society for the Study of Fatty Acids and Lipids: RECOMMENDATIONS FOR INTAKE OF POLYUNSATURATED FATTY ACIDS IN HEALTHY ADULTS. 2004.
71. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747-57.
72. ISSFAL. Global recommednations for EPA and DHA intake [Available from: https://www.issfal.org/assets/globalrecommendationssummary19nov2014landscape_-3-.pdf.
73. Derbyshire E. Oily Fish and Omega-3s Across the Life Stages: A Focus on Intakes and Future Directions. Front Nutr. 2019;6:165.
74. Scheelbeek P, Green R, Papier K, Knuppel A, Alae-Carew C, Balkwill A, et al. Health impacts and environmental footprints of diets that meet the Eatwell Guide recommendations: analyses of multiple UK studies. BMJ Open. 2020;10(8):e037554.
75. Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a
systematic analysis including 266 country-specific nutrition surveys. Bmj. 2014;348:g2272.
76. Meyer BJ. Australians are not Meeting the Recommended Intakes for Omega-3 Long Chain Polyunsaturated Fatty Acids: Results of an Analysis from the 2011-2012 National
Nutrition and Physical Activity Survey. Nutrients. 2016;8(3):111.
77. Maguire ER, Monsivais P. Socio-economic dietary inequalities in UK adults: an updated picture of key food groups and nutrients from national surveillance data. Br J Nutr. 2015;113(1):181-9.
78. Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating
meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of α�linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk
cohort. Am J Clin Nutr. 2010;92(5):1040-51.
79. Harris WS. The omega-3 index: clinical utility for therapeutic intervention. Curr Cardiol Rep. 2010;12(6):503-8.
80. Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, et al. Omega-3 world map: 2024 update. Prog Lipid Res. 2024;95:101286.
81. Schuchardt JP, Tintle N, Westra J, Harris WS. Estimation and predictors of the Omega-3 Index in the UK Biobank. Br J Nutr. 2023;130(2):312-22.
82. Burdge GC, Tan SY, Henry CJ. Long-chain n-3 PUFA in vegetarian women: a metabolic perspective. J Nutr Sci. 2017;6:e58.
83. Craddock JC, Probst YC, Neale EP, Peoples GE. A Cross-Sectional Comparison of the Whole Blood Fatty Acid Profile and Omega-3 Index of Male Vegan and Omnivorous
Endurance Athletes. J Am Nutr Assoc. 2022;41(3):333-41.
84. Golden CD, Koehn JZ, Shepon A, Passarelli S, Free CM, Viana DF, et al. Aquatic foods to nourish nations. Nature. 2021;598(7880):315-20.
85. Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A Global Review of Food-Based Dietary Guidelines. Adv Nutr. 2019;10(4):590-605.
86. Gruber N, Clement D, Carter BR, Feely RA, van Heuven S, Hoppema M, et al. The oceanic sink for anthropogenic CO(2) from 1994 to 2007. Science. 2019;363(6432):1193-9.
87. Figuerola B, Hancock AM, Bax N, Cummings VJ, Downey R, Griffiths HJ, et al. A Review and Meta-Analysis of Potential Impacts of Ocean Acidification on Marine Calcifiers
From the Southern Ocean. Frontiers in Marine Science. 2021;8:584445-52.
88. Huang M, Ding L, Wang J, Ding C, Tao J. The impacts of climate change on fish growth: A summary of conducted studies and current knowledge Ecological Indicators. 2021;121:106976.
89. FAO. The State of World Fisheries and Aquaculture 2020. In brief. Sustainability in action. Rome2020.
90. Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA, Costello C, et al. Effective fisheries management instrumental in improving fish stock status. Proc Natl Acad Sci U S A. 2020;117(4):2218-24.
91. Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551-63.
92. Hamilton HA, Newton R, Auchterlonie NA, Müller DB. Systems approach to quantify the global omega-3 fatty acid cycle. Nature Food. 2020;1:59-62.
93. Salem N, Jr., Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr Opin Clin Nutr Metab Care. 2015;18(2):147-54.
94. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand.
Nutrients. 2019;11(1).
95. Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep. 2016;6:21892.
96. Steenson S, Creedon A. Plenty more fish in the sea? - is there a place for seafood within a healthier and more sustainable diet? Nutrition Bulletin. 2022;47:261-72.
97. Givens DI, Gibbs RA. Very long chain n-3 polyunsaturated fatty acids in the food chain in the UK and the potential of animal-derived foods to increase intake. Nutrition
Bulletin. 2006;31:104-10.
98. Stewart C, Piernas C, Cook B, Jebb SA. Trends in UK meat consumption: analysis of data from years 1-11 (2008-09 to 2018-19) of the National Diet and Nutrition Survey rolling
programme. Lancet Planet Health. 2021;5(10):e699-e708.
99. Khan IA, Parker NB, Löhr CV, Cherian G. Docosahexaenoic acid (22:6 n-3)-rich microalgae along with methionine supplementation in broiler chickens: effects on production
performance, breast muscle quality attributes, lipid profile, and incidence of white striping and myopathy. Poult Sci. 2021;100(2):865-74.
100. Keegan JD, Fusconi G, Morlacchini M, Moran CA. Comparing docosahexaenoic acid supplementation strategies in terms of broiler tissue enrichment, productivity, and cost.
Journal of Applied Poultry Research. 2020;29(3):636-52.
101. Rymer C, Gibbs RA, Givens DI. Comparison of algal and fish sources on the oxidative stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty
acids. Poult Sci. 2010;89(1):150-9
102. Moran CA, Currie D, Keegan JD, Knox A. Tolerance of Broilers to Dietary Supplementation with High Levels of the DHA-Rich Microalga, Aurantiochytrium
Limacinum: Effects on Health and Productivity. Animals (Basel). 2018;8(10).103. Rymer C, Hartnell GF, Givens DI. The effect of feeding modified soyabean oil enriched with C18 : 4 n-3 to broilers on the deposition of n-3 fatty acids in chicken meat. Br J Nutr. 2011;105(6):866-78.
104. Villora J, Pérez JA, Acosta NG, Rodríguez-Barreto D, Alonso PJ, Betancor MB, et al. Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of
chicken (Gallus gallus). Poult Sci. 2025;104(2):104820.
105. James MJ, Ursin VM, Cleland LG. Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n-3 fatty acids. Am J Clin Nutr. 2003;77(5):1140-5.
106. Walker CG, Jebb SA, Calder PC. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. Nutrition.
2013;29(2):363-9.
107. Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res. 2016;64:30-56.
108. Seidel U, Eberhardt K, Wiebel M, Luersen K, Ipharraguerre IR, Haegele FA, et al. Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured
hepatocytes. Front Nutr. 2024;11:1359958.
109. Sardi L, Martelli G, Lambertini L, Parisini P, Mordenti A. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livestock
Science. 2021;103:95-103.
110. Tognocchi M, Conte G, Mantino A, Foggi G, Casarosa L, Tinagli S, et al. Linseed supplementation in the diet of fattening pigs: Effect on the fatty acid profile of different pork cuts. Meat Sci. 2023;204:109276.
111. Feng J, Long S, Zhang HJ, Wu SG, Qi GH, Wang J. Comparative effects of dietary microalgae oil and fish oil on fatty acid composition and sensory quality of table eggs. Poult Sci. 2020;99(3):1734-43.
112. Herber SM, Van Elswyk ME. Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. Poult Sci. 1996;75(12):1501-7.
113. Maina AN, Lewis E, Kiarie EG. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poult Sci. 2023;102(10):102921
114. Ferrier LK, Caston LJ, Leeson S, Squires J, Weaver BJ, Holub BJ. alpha-Linolenic acid- and docosahexaenoic acid-enriched eggs from hens fed flaxseed: influence on blood
lipids and platelet phospholipid fatty acids in humans. Am J Clin Nutr. 1995;62(1):81-6.
115. Scheideler SE, Froning GW. The combined influence of dietary flaxseed variety, level, form, and storage conditions on egg production and composition among vitamin E�supplemented hens. Poult Sci. 1996;75(10):1221-6.
116. Whittle RH, Kiarie EG, Ma DWL, Widowski TM. Feeding flaxseed to chicken hens changes the size and fatty acid composition of their chicks' brains. Front Physiol.
2024;15:1400611.
117. UK Egg Industry Data [Available from: https://www.egginfo.co.uk/egg-facts-and�figures/industry-information/data
118. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. 2006.
119. O'Callaghan TF, Hennessy D, McAuliffe S, Kilcawley KN, O'Donovan M, Dillon P, et al. Effect of pasture versus indoor feeding systems on raw milk composition and quality
over an entire lactation. J Dairy Sci. 2016;99(12):9424-40.
120. Nguyen QV, Malau-Aduli BS, Cavalieri J, Malau-Aduli AEO, Nichols PD. Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. Nutrients. 2019;11(4).
121. Rinttilä T, Moran CA, Apajalahti J. DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting
Microbial Activity. Applied Microbiology. 2022;2(1):53-72.
122. Moran CA, Morlacchini M, Keegan JD, Warren H, Fusconi G. Dietary supplementation of dairy cows with a docosahexaenoic acid-rich thraustochytrid, <i>Aurantiochytrium limacinum</i>: effects on milk quality, fatty acid composition and
cheese making properties. Journal of Animal and Feed Sciences. 2019;28(1):3-14.
123. Kairenius P, Ärölä A, Leskinen H, Toivonen V, Ahvenjärvi S, Vanhatalo A, et al. Dietary fish oil supplements depress milk fat yield and alter milk fatty acid composition in
lactating cows fed grass silage-based diets. Journal of Dairy Science. 2015;98(8):5653-71.
124. Hennessy AA, Kenny DA, Byrne CJ, Childs S, Ross RP, Devery R, Stanton C. Fatty acid concentration of plasma, muscle, adipose and liver from beef heifers fed an encapsulated n-3 polyunsaturated fatty acid supplement. Animal. 2021;15(1):100039.
125. Ponnampalam EN, Burnett VF, Norng S, Hopkins DL, Plozza T, Jacobs JL. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat rom lambs fed a roughage based diet with flaxseed or algae. Meat Science. 2016;111:154-60.
126. OHID. National Diet and Nutrition Survey,
https://www.gov.uk/government/collections/national-diet-and-nutrition-survey. In: Disparities OfHIa, editor. 2023.
127. Our World in Data: Per capita meat consumption by type, United Kingdom, 1961 to 2022, https://ourworldindata.org/grapher/per-capita-meat-consumption-by-type-kilograms�per-year?tab=chart&country=~GBR.
128. Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C. Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and
pharmaceuticals. Curr Opin Biotechnol. 2021;69:199-211.
129. Xu Y. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga Nannochloropsis oceanica. J Agric Food Chem. 2022;70(37):11500-9.
130. Jesionowska M, Ovadia J, Hockemeyer K, Clews AC, Y X. EPA and DHA in microalgae: Health benefits, biosynthesis, and metabolic engineering advances. Journal of the
American Oil Chemists Society. 2023;100:831-42.
131. Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr. 2024;64(29):10564-82.
132. Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL�cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142(1):99-104.
133. Choi GY, Calder PC. The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors: an updated systematic review of
randomized controlled trials. Front Nutr. 2024;11:1423228.
134. Han L, Silvestre S, Sayanova O, Haslam RP, Napier JA. Using field evaluation and systematic iteration to rationalize the accumulation of omega-3 long-chain polyunsaturated
fatty acids in transgenic Camelina sativa. Plant Biotechnol J. 2022;20(9):1833-52.
135. Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. Adv Food Nutr Res. 2023;105:343-98.
136. Petrie JR, Zhou XR, Leonforte A, McAllister J, Shrestha P, Kennedy Y, et al. Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in
the Seed Oil. Front Plant Sci. 2020;11:727.
137. Ruiz-Lopez N, Haslam RP, Usher S, Napier JA, Sayanova O. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in
transgenic oilseeds. Plant Biotechnol J. 2015;13(9):1264-75.
138. Betancor MB, Sprague M, Montero D, Usher S, Sayanova O, Campbell PJ, et al. Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.). Lipids. 2016;51(10):1171-91.
139. Betancor MB, Sprague M, Usher S, Sayanova O, Campbell PJ, Napier JA, Tocher DR. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil
as a source of eicosapentaenoic acid for fish. Sci Rep. 2015;5:8104.
140. Tocher DR, Sprague M, Han L, Sayanova O, Norambuena F, Napier JA, Betancor MB. Inclusion of oil from transgenic Camelina sativa in feed effectively supplies EPA and
DHA to Atlantic salmon (Salmo salar) grown to market size in seawater pens. Food Chem. 2024;456:139414.
141. Tejera N, Vauzour D, Betancor MB, Sayanova O, Usher S, Cochard M, et al. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of
Eicosapentaenoic Acid in Mice. J Nutr. 2016;146(2):227-35.
142. West AL, Miles EA, Lillycrop KA, Han L, Sayanova O, Napier JA, et al. Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is
equivalent to that from fish oil in healthy humans. Br J Nutr. 2019;121(11):1235-46.
143. West AL, Miles EA, Lillycrop KA, Han L, Napier JA, Calder PC, Burdge GC. Dietary supplementation with seed oil from transgenic Camelina sativa induces similar
increments in plasma and erythrocyte DHA and EPA to fish oil in healthy humans. Br J Nutr. 2020;124(9):922-30.
144. Visioli F, Risé P, Barassi MC, Marangoni F, Galli C. Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. Lipids. 2003;38(4):415-8.
145. Elvevoll EO, Barstad H, Breimo ES, Brox J, Eilertsen KE, Lund T, et al. Enhanced incorporation of n-3 fatty acids from fish compared with fish oils. Lipids. 2006;41(12):1109-14.
146. Stanton AV, James K, Brennan MM, O'Donovan F, Buskandar F, Shortall K, et al. Omega-3 index and blood pressure responses to eating foods naturally enriched with omega-3
polyunsaturated fatty acids: a randomized controlled trial. Sci Rep. 2020;10(1):15444.
147. Köhler A, Heinrich J, von Schacky C. Bioavailability of Dietary Omega-3 Fatty Acids Added to a Variety of Sausages in Healthy Individuals. Nutrients. 2017;9(6).
148. Walker RE, Jackson KH, Tintle NL, Shearer GC, Bernasconi A, Masson S, et al. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr. 2019;110(4):1034-40.
149. Corrales-Retana L, Ciucci F, Conte G, Casarosa L, Mele M, Serra A. Profile of fatty acid lipid fractions of omega-3 fatty acid-enriched table eggs. J Anim Physiol Anim Nutr
(Berl). 2021;105(2):326-35.
150. Betti M, Perez TI, Zuidhof MJ, Renema RA. Omega-3-enriched broiler meat: 3. Fatty
acid distribution between triacylglycerol and phospholipid classes. Poult Sci. 2009;88(8):1740-54.
151. Coates AM, Sioutis S, Buckley JD, Howe PR. Regular consumption of n-3 fatty acid�enriched pork modifies cardiovascular risk factors. Br J Nutr. 2009;101(4):592-7.
152. Lohner S, Fekete K, Marosvölgyi T, Decsi T. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab.
2013;62(2):98-112.
153. Walker CG, Browning LM, Mander AP, Madden J, West AL, Calder PC, Jebb SA. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells
and adipose tissue in humans. Br J Nutr. 2014;111(4):679-89.
154. Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002;88(4):411-
20.
155. Kim D, Choi JE, Park Y. Low-linoleic acid diet and oestrogen enhance the conversion of α-linolenic acid into DHA through modification of conversion enzymes and transcription
factors. Br J Nutr. 2019;121(2):137-45.
156. Kitson AP, Marks KA, Shaw B, Mutch DM, Stark KD. Treatment of ovariectomized rats with 17β-estradiol increases hepatic delta-6 desaturase enzyme expression and
docosahexaenoic acid levels in hepatic and plasma phospholipids. Prostaglandins Leukot Essent Fatty Acids. 2013;89(2-3):81-8.
157. Sibbons CM, Brenna JT, Lawrence P, Hoile SP, Clarke-Harris R, Lillycrop KA, Burdge GC. Effect of sex hormones on n-3 polyunsaturated fatty acid biosynthesis in HepG2
cells and in human primary hepatocytes. Prostaglandins Leukot Essent Fatty Acids. 2014;90(2-3):47-54.
158. Harris WS, Tintle NL, Manson JE, Metherel AH, Robinson JG. Effects of menopausal hormone therapy on erythrocyte n-3 and n-6 PUFA concentrations in the
Women's Health Initiative randomized trial. Am J Clin Nutr. 2021;113(6):1700-6
159. Liou YA, King DJ, Zibrik D, Innis SM. Decreasing linoleic acid with constant alpha�linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J Nutr. 2007;137(4):945-52.
160. Minihane AM, Brady LM, Lovegrove SS, Lesauvage SV, Williams CM, Lovegrove JA. Lack of effect of dietary n-6:n-3 PUFA ratio on plasma lipids and markers of insulin
responses in Indian Asians living in the UK. Eur J Nutr. 2005;44(1):26-32.
161. Gonzalez-Soto M, Mutch DM. Diet Regulation of Long-Chain PUFA Synthesis: Role of Macronutrients, Micronutrients, and Polyphenols on Δ-5/Δ-6 Desaturases and Elongases
2/5. Adv Nutr. 2021;12(3):980-94.
162. Mujica-Coopman MF, Franco-Sena AB, Farias DR, Vaz JS, Brito A, Kac G, Lamers Y. Vitamin B-6 Status in Unsupplemented Pregnant Women Is Associated Positively with
Serum Docosahexaenoic Acid and Inversely with the n-6-to-n-3 Fatty Acid Ratio. J Nutr. 2017;147(2):170-8.
163. Toufektsian MC, Salen P, Laporte F, Tonelli C, de Lorgeril M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J Nutr. 2011;141(1):37-41.
164. Vauzour D, Tejera N, O'Neill C, Booz V, Jude B, Wolf IM, et al. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans. J Nutr
Biochem. 2015;26(3):211-8.
165. Ounnas F, Privé F, Salen P, Hazane-Puch F, Laporte F, Fontaine E, et al. Wheat aleurone polyphenols increase plasma eicosapentaenoic acid in rats. Food Nutr Res. 2014;58.
166. Ounnas F, de Lorgeril M, Salen P, Laporte F, Calani L, Mena P, et al. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like
effect. Sci Rep. 2017;7:40162.
167. Risé P, Ghezzi S, Carissimi R, Mastromauro F, Petroni A, Galli C. Delta5 desaturase mRNA levels are increased by simvastatin via SREBP-1 at early stages, not via PPARalpha,
in THP-1 cells. Eur J Pharmacol. 2007;571(2-3):97-105.
168. Tanaka S, Ishihara N, Suzuki S, Watanabe Y, Nagayama D, Yamaguchi T, et al. Fatty acid desaturase 2 is up-regulated by the treatment with statin through geranylgeranyl
pyrophosphate-dependent Rho kinase pathway in HepG2 cells. Sci Rep. 2019;9(1):10009.
169. Harris JI, Hibbeln JR, Mackey RH, Muldoon MF. Statin treatment alters serum n-3 and n-6 fatty acids in hypercholesterolemic patients. Prostaglandins Leukot Essent Fatty Acids. 2004;71(4):263-9.
170. Michie S, Atkins L, West R. The Behaviour Change Wheel: A Guide To Designing
Interventions. Sutton, UK: Silverback Publishing; 2014
171. OHID. The Eatwell Guide, https://www.gov.uk/government/publications/the-eatwell�guide. In: Disparities OfHIa, editor. 2016.
172. Feucht Y, Zander K. Consumers' knowledge and information needs on organic aquaculture. . Proceedings of the 4th ISOFAR Scientific Conference ‘Building Organic
Bridges’, at the Organic World Congress 13–15 Oct, Istanbul, Turkey. 2014.
173. NHS. Better Health Better Families, https://www.nhs.uk/healthier-families/.
174. Steenson S, Creedon A. Plenty more fish in the sea? - is there a place for seafood within a healthier and more sustainable diet? Nutr Bull. 2022;47(2):261-73.
175. MacIntosh SC, Shaw M, Connelly M, Yao ZJ. Food and Feed Safety of NS-B5ØØ27-4 Omega-3 Canola (Brassica napus): A New Source of Long-Chain Omega-3 Fatty Acids.
Front Nutr. 2021;8:716659.
176. Nutrient analysis of fish and fish products. In: Health Do, editor. 2013.
177. Mccance RA, editor Fatty acids : seventh supplement to the fifth edition of McCance and Widdowson's The composition of foods 1998. University Staff: Request a correction | Centaur Editors: Update this record |