Accessibility navigation


The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation

Cogo, S. ORCID: https://orcid.org/0000-0002-5792-6897, Ho, F. Y., Tosoni, E., Tomkins, J. E., Tessari, I., Iannotta, L., Montine, T. J., Manzoni, C., Lewis, P. A., Bubacco, L., Chartier Harlin, M.-C., Taymans, J.-M., Kortholt, A., Nichols, J., Cendron, L., Civiero, L. and Greggio, E. (2022) The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 1778. 147781. ISSN 0006-8993

[thumbnail of Cogo et al., 2022_Roc-PAK6_Brain Research_final_R2-unmarked.pdf] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

369kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.brainres.2022.147781

Abstract/Summary

Leucine-rich repeat kinase 2 (LRRK2) has taken center stage in Parkinson’s disease (PD) research as mutations cause familial PD and more common variants increase lifetime risk for disease. One unique feature in LRRK2 is the coexistence of GTPase/Roc (Ras of complex) and kinase catalytic functions, bridged by a COR (C-terminal Of Roc) platform for dimerization. Multiple PD mutations are located within the Roc/GTPase domain and concomitantly lead to defective GTPase activity and augmented kinase activity in cells, supporting a crosstalk between GTPase and kinase domains. In addition, biochemical and structural data highlight the importance of Roc as a molecular switch modulating LRRK2 monomer-to-dimer equilibrium and building the interface for interaction with binding partners. Here we review the effects of PD Roc mutations on LRRK2 function and discuss the importance of Roc as a hub for multiple molecular interactions relevant for the regulation of cytoskeletal dynamics and intracellular trafficking pathways. Among the well-characterized Roc interactors, we focused on the cytoskeletal-related kinase p21-activated kinase 6 (PAK6). We report the affinity between LRRK2-Roc and PAK6 measured by microscale thermophoresis (MST). We further show that PAK6 can modulate LRRK2-mediated phosphorylation of RAB substrates in the presence of LRRK2 wild-type (WT) or the PD G2019S kinase mutant but not when the PD Roc mutation R1441G is expressed. These findings support a mechanism whereby mutations in Roc might affect LRRK2 activity through impaired protein-protein interaction in the cell.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:123553
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation