Hypothetical feed conversion efficiency of cultured meat compared to conventional animal production
Lanzoni, D., Givens, I.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.fufo.2025.100767 Abstract/SummaryThe pressure on agro-livestock systems calls for a critical review of production systems focusing on efficiency and sustainability. Cultured meat (CM) emerges as an alternative production but requires comparable parameters for evaluation. This paper proposes a hypothetical reformulation of the concept of Feed Conversion Rate (FCR) and Edible Meat Conversion Rate (EMCR), traditionally employed in animal-derived food production, by adapting it to the context of cellular agriculture, in particular to CM. After an analysis of the FCR in the main conventional sectors (poultry, swine, cattle and fish), used for the calculation of EMCR, a theoretical model was developed for the calculation of the Cultured Meat Conversion Ratio (CMCR), based on the chemical composition of the culture media. The estimated CMCRs (0.316–0.687) and the CMCR on a dry matter basis for CM (2.29) were lower than those reported for traditional animal supply chains, indicating a potentially higher theoretical efficiency. However, these estimates do not account for the specific resources required to produce the ingredients of the culture medium, the actual metabolic efficiency of the cells, the accumulation of toxic metabolites (e.g., ammonia, lactate), nor the potential impact of future media formulations based on alternatives to foetal bovine serum. Although a theoretical calculation, this study provides a useful conceptual framework for the definition and optimisation of FCR in alternative cell culture systems, laying the basis for the development of reliable metrics in cellular agriculture and comparative evaluation between innovative and conventional food systems
Abdel-Mobdy, H. E., Abdel-Aal, H. A., Souzan, S. L., & Nassar, A. G. (2021). Nutritional value of african catfish (Clarias gariepinus) meat. Asian Journal of Applied Chemistry Research, 8(2), 31-39. DOI: 10.9734/AJACR/2021/v8i230190.
Adam, F., and L. Bütfering. (2009). “Wann Müssen Meine Schweine an Den Haken?” top agrar. top agrar online. https://www.topagrar.com/schwein/aus-dem-heft/wann-muessen-meineschweine-an-den-haken-9685161.html.
Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., ... & Rizzuto, R. (2008). High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences, 105(4), 1226-1231. https://doi.org/10.1073/pnas.0711402105.
Albertí, P., Panea, B., Sañudo, C., Olleta, J. L., Ripoll, G., Ertbjerg, P., ... & Williams, J. L. (2008). Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livestock Science, 114(1), 19-30. https://doi.org/10.1016/j.livsci.2007.04.010.
Anaborapi. (2025). La razza bovina piemontese. https:IIanaborapi.it/razza/.
Aviagen. (2022). Ross 308, Ross 308 FF. RossxRoss308-BroilerPerformanceObjectives2022-EN.pdf.
Balseiro, P., Moe, Ø., Gamlem, I., Shimizu, M., Sveier, H., Nilsen, T. O., ... & Handeland, S. O. (2018). Comparison between Atlantic salmon Salmo salar post‐smolts reared in open sea cages and in the Preline raceway semi‐closed containment aquaculture system. Journal of Fish Biology, 93(3), 567-579. https://doi.org/10.1111/jfb.13659.
Barszcz, M., Tuśnio, A., & Taciak, M. (2024). Poultry nutrition. Physical Sciences Reviews, 9(2), 611-650.
Bartoň, L., Řehák, D., Teslík, V., Bureš, D., & Zahrádková, R. (2006). Effect of breed on growth performance and carcass composition of Aberdeen Angus, Charolais, Herefordand Simmental bulls. Czech J. Anim. Sci, 51, 47-53. DOI: 10.17221/3908-CJAS.
Bellet, C., & Rushton, J. (2019). World food security, globalisation and animal farming: unlocking dominant paradigms of animal health science. Revue Scientifique et Technique, 38(2), 383-393. doi: 10.20506/rst.38.2.2993.
Besson, M., Aubin, J., Komen, H., Poelman, M., Quillet, E., Vandeputte, M., ... & De Boer, I. J. M. (2016). Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. Journal of cleaner production, 116, 100-109. https://doi.org/10.1016/j.jclepro.2015.12.084.
Bosi, P., & Russo, V. (2004). The production of the heavy pig for high quality processed products. Italian Journal of Animal Science, 3(4), 309-321. https://doi.org/10.4081/ijas.2004.309
Breewood, H., & Garnett, T. (2020). What is Feed-food Competition?(Foodsource: building blocks).
Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., & Gstraunthaler, G. (2010). The serum-free media interactive online database. ALTEX-Alternatives to animal experimentation, 27(1), 53-62. https://doi.org/10.14573/altex.2010.1.53.
Bureš, D., & Bartoň, L. (2018). Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livestock Science, 214, 231-237. https://doi.org/10.1016/j.livsci.2018.06.017.
Chambaz, A., Scheeder, M. R. L., Kreuzer, M., & Dufey, P. A. (2003). Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat science, 63(4), 491-500. https://doi.org/10.1016/S0309-1740(02)00109-2.
Chetroiu, R., & Iurchevici, L. (2024). economic efficiency in milk production. AGRICULTURE ECONOMY AND RURAL DEVELOPMENT–TRENDS AND CHALLENGES “Agriculture and rural economy between tradition, innovation and sustainability”, 100.
Ching, F. F. (2023). Silurus asotus (Amur catfish). https://www.cabidigitallibrary.ordg.
Choi, K. H., Yoon, J. W., Kim, M., Lee, H. J., Jeong, J., Ryu, M., ... & Lee, C. K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive reviews in food science and food safety, 20(1), 429-457. https://doi.org/10.1111/1541-4337.12661.
Chriki, S., & Hocquette, J.F. (2020). The myth of cultured meat: a review. Frontiers in nutrition, 7, 7. https://doi.org/10.3389/fnut.2020.00007.
Coleman, S. W., & Moore, J. E. (2003). Feed quality and animal performance. Field Crops Research, 84(1-2), 17-29. https://doi.org/10.1016/S0378-4290(03)00138-2.
Consorzio del Prosciutto di Parma. (2023). Disciplinare di produzione della Denominazione di Origine Protetta Prosciutto di Parma. https://www.prosciuttodiparma.com.
Consorzio del Prosciutto San Daniele. (2023). Disciplinare di Produzione della Denominazione di Origine Protetta “Prosciutto di San Daniele”. https://www.prosciuttosandaniele.it.
Dauda, A. B., Natrah, I., Karim, M., Kamarudin, M. S., & Bichi, A. U. H. (2018). African catfish aquaculture in Malaysia and Nigeria: Status, trends and prospects. Fisheries and Aquaculture Journal, 9(1), 1-5. DOI: 10.4172/2150-3508.1000237.
David, L. H., Pinho, S. M., Keesman, K. J., & Garcia, F. (2021). Assessing the sustainability of tilapia farming in biofloc-based culture using emergy synthesis. Ecological Indicators, 131, 108186. https://doi.org/10.1016/j.ecolind.2021.108186.
Ding, S., Post, M. J., & Zhou, G. (2021). Perspectives on cultured meat. Food Materials Research, 1(1), 1-5. doi: 10.48130/FMR-2021-0003.
EFSA Panel on Animal Health and Animal Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., ... & Winckler, C. (2023). Welfare of calves. Efsa Journal, 21(3), e07896. https://doi.org/10.2903/j.efsa.2023.7896
Egerszegi, I., Rátky, J. O. Z. S. E. F., Solti, L. Á. S. Z. L. Ó., & Brüssow, K. P. (2003). Mangalica–an indigenous swine breed from Hungary. Archives Animal Breeding, 46(3), 245-256. https://doi.org/10.5194/aab-46-245-2003.
Eibl, R., Senn, Y., Gubser, G., Jossen, V., Van Den Bos, C., & Eibl, D. (2021). Cellular agriculture: opportunities and challenges. Annual Review of Food Science and Technology, 12(1), 51-73. https://doi.org/10.1146/annurev-food-063020-123940.
European Union. (2017). Directive 2008/119/EC – minimum standards for the protection of calves. https://eur-lex.europa.eu.
Fàbrega, E., Puigvert, X., Soler, J., Tibau, J., & Dalmau, A. (2013). Effect of on farm mixing and slaughter strategy on behaviour, welfare and productivity in Duroc finished entire male pigs. Applied Animal Behaviour Science, 143(1), 31-39. https://doi.org/10.1016/j.applanim.2012.11.006.
FAO. (1995). World livestock production systems - Current status, issues and trends. https://openknowledge.fao.org/handle/20.500.14283/x6101e.
FAO. (2021). Food Balances. http://www.fao.org/faostat/en/#data/FBS.
FAO. (2024). The State of World Fisheries and Aquaculture 2024. Blue Transformation in action. https://openknowledge.fao.org/handle/20.500.14283/cd0683en.
FAO. (2025). Salmo salar. Cultured Aquatic Species Information Programme. Text by Jones, M.. In: Fisheries and Aquaculture. Updated 2004-11-25 [Cited Friday, April 4th 2025]. https://www.fao.org/fishery/en/culturedspecies/salmo_salar?lang=en.
FDA. (2021). Premarket notice for integral tissue cultured-poultry meat. https://www.fda.gov.
Feddern, V., de Oliveira, K. P. V., Gressler, V., Fogaça, F. H., de Faria Lopes, G. P., Rodrigues, C. A., ... & Sanjuan-Alberte, P. (2024). Cultivated poultry and seafood: Opportunities and future challenges. In Cellular Agriculture (pp. 267-292). Academic Press. https://doi.org/10.1016/B978-0-443-18767-4.00024-X.
Fiems LO, De Campeneere S, Van Caelenbergh W, De Boever JL, Vanacker JM. Carcass and meat quality in double-muscled Belgian Blue bulls and cows. Meat Sci. 2003 Mar;63(3):345-52. doi: 10.1016/s0309-1740(02)00092-x. PMID: 22062387. https://doi.org/10.1016/S0309-1740(02)00092-X.
Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C., & Cao, L. (2018). Feed conversion efficiency in aquaculture: do we measure it correctly?. Environmental Research Letters, 13(2), 024017.doi: 10.1088/1748-9326/aaa273.
Furuichi, Y., Kawabata, Y., Aoki, M., Mita, Y., Fujii, N. L., & Manabe, Y. (2021). Excess glucose impedes the proliferation of skeletal muscle satellite cells under adherent culture conditions. Frontiers in cell and developmental biology, 9, 640399. https://doi.org/10.3389/fcell.2021.640399.
Gaillard, C., Brossard, L., & Dourmad, J. Y. (2020). Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology, 268, 114611. https://doi.org/10.1016/j.anifeedsci.2020.114611.
Gamsiz, K., & Korkut, A. Y. (2022). Factors affecting Atlantic Bluefin Tuna (Thunnus Thynnus Linnaeus, 1758) growth and feed conversion rates under fattening conditions.
Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water resources and industry, 1, 25-36. https://doi.org/10.1016/j.wri.2013.03.001.
Goswami, M., Belathur Shambhugowda, Y., Sathiyanarayanan, A., Pinto, N., Duscher, A., Ovissipour, R., ... & Chandragiri Nagarajarao, R. (2022). Cellular aquaculture: prospects and challenges. Micromachines, 13(6), 828. https://doi.org/10.3390/mi13060828.
Gotoh, T., Nishimura, T., Kuchida, K., & Mannen, H. (2018). The Japanese Wagyu beef industry: Current situation and future prospects—A review. Asian-Australasian journal of animal sciences, 31(7), 933. doi: 10.5713/ajas.18.0333.
Guarnido-Lopez, P., Pinna, D., Maeda, Y., Ogawa, Y., BenAouda, M., Kohama, N., ... & Kondo, N. (2024). Phenotypic relationships between meat quality parameters and residual feed intake in Japanese black Wagyu cattle. Journal of Animal Science, 102, skae192. https://doi.org/10.1093/jas/skae192.
Gundry, R. L., Raginski, K., Tarasova, Y., Tchernyshyov, I., Bausch-Fluck, D., Elliott, S. T., ... & Wollscheid, B. (2009). The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation. Molecular & Cellular Proteomics, 8(11), 2555-2569. https://doi.org/10.1074/mcp.M900195-MCP200.
Gupta, M. V., & Acosta, B. O. (2004). A review of global tilapia farming practices. Worldfish center, 7-16.
Heinzl, I., & Caballero, M. (2021). Rising feed costs? Focus on the FCR. Global Technical Manager Poultry, EW Nutrition.
Ho, Y. Y., Lu, H. K., Lim, Z. F. S., Lim, H. W., Ho, Y. S., & Ng, S. K. (2021). Applications and analysis of hydrolysates in animal cell culture. Bioresources and Bioprocessing, 8, 1-15. https://doi.org/10.1186/s40643-021-00443-w.
Hozáková, K., Vavrišínová, K., Neirurerová, P., & Bujko, J. (2020). Growth of beef cattle as prediction for meat production: A review. Acta Fytotechnica et Zootechnica, 23(2). https://doi.org/10.15414/afz.2020.23.02.58-69.
Hubalek, S., Post, M. J., & Moutsatsou, P. (2022). Towards resource-efficient and cost-efficient cultured meat. Current Opinion in Food Science, 47, 100885. https://doi.org/10.1016/j.cofs.2022.100885.
Humbird, D. (2021). Scale‐up economics for cultured meat. Biotechnology and Bioengineering, 118(8), 3239-3250. https://doi.org/10.1002/bit.27848.
International Committee for the Conservationn of Atlantic Tuna. ( 2008) . 28 Recommendaton amending the recommendation by ICCAT to establish a multiannual recovery plan for bluefin tuna in the eastern Atlantic and Mediterranean. Madrid, International Committee for the Conservation of Atlantic Tuna.
Jarvis, L. S., & Valdes‐Donoso, P. (2018). A selective review of the economic analysis of animal health management. Journal of Agricultural Economics, 69(1), 201-225. https://doi.org/10.1111/1477-9552.12131.
Kantono, K., Hamid, N., Malavalli, M. M., Liu, Y., Liu, T., & Seyfoddin, A. (2022). Consumer acceptance and production of in vitro meat: A review. Sustainability, 14(9), 4910. https://doi.org/10.3390/su14094910.
Keady, S. M., Keane, M. G., Waters, S. M., Wylie, A. R., O'Riordan, E. G., Keogh, K., & Kenny, D. A. (2021). Effect of dietary restriction and compensatory growth on performance, carcass characteristics, and metabolic hormone concentrations in Angus and Belgian Blue steers. Animal, 15(6), 100215. https://doi.org/10.1016/j.animal.2021.100215.
Kebebe, E. G., Oosting, S. J., Haileslassie, A., Duncan, A. J., & De Boer, I. J. M. (2015). Strategies for improving water use efficiency of livestock production in rain-fed systems. animal, 9(5), 908-916. https://doi.org/10.1017/S1751731114003115.
Khan, R. U., Durrani, F. R., Chand, N., & Anwar, H. (2010). Influence of feed supplementation with Cannabis sativa on quality of broilers carcass. Pakistan Veterinary Journal, 30(1), 34-38.
Kumar, G., Engle, C. R., Hanson, T. R., Tucker, C. S., Brown, T. W., Bott, L. B., ... & Torrans, E. L. (2018). Economics of alternative catfish production technologies. Journal of the World Aquaculture Society, 49(6), 1039-1057. https://doi.org/10.1111/jwas.12555.
Lagha, M., Sato, T., Bajard, L., Daubas, P., Esner, M., Montarras, D., ... & Buckingham, M. (2008). Regulation of skeletal muscle stem cell behavior by Pax3 and Pax7. In Cold Spring Harbor symposia on quantitative biology (Vol. 73, pp. 307-315). Cold Spring Harbor Laboratory Press. 10.1101/sqb.2008.73.006.
Lakra, W. S., Swaminathan, T. R., & Joy, K. P. (2011). Development, characterization, conservation and storage of fish cell lines: a review. Fish physiology and biochemistry, 37, 1-20. https://doi.org/10.1007/s10695-010-9411-x.
Lamarche, É., Lala-Tabbert, N., Gunanayagam, A., St-Louis, C., & Wiper-Bergeron, N. (2015). Retinoic acid promotes myogenesis in myoblasts by antagonizing transforming growth factor-beta signaling via C/EBPβ. Skeletal muscle, 5, 1-14. https://doi.org/10.1186/s13395-015-0032-z.
Lanzoni, D., Bracco, F., Cheli, F., Colosimo, B. M., Moscatelli, D., Baldi, A., ... & Giromini, C. (2022). Biotechnological and technical challenges related to cultured meat production. Applied Sciences, 12(13), 6771. https://doi.org/10.3390/app12136771.
Lanzoni, D., Rebucci, R., Formici, G., Cheli, F., Ragone, G., Baldi, A., ... & Giromini, C. (2024). Cultured meat in the European Union: Legislative context and food safety issues. Current research in food science, 100722.https://doi.org/10.1016/j.crfs.2024.100722.
Lima, P. C., Abreu, J. L., Silva, A. E., Severi, W., Gálvez, A. O., & Silva, L. O. B. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Spanish Journal of Agricultural Research, 16(4), 9.
Madilindi, M. A., Zishiri, O. T., Dube, B., & Banga, C. B. (2022). Technological advances in genetic improvement of feed efficiency in dairy cattle: a review. Livestock Science, 258, 104871. https://doi.org/10.1016/j.livsci.2022.104871.
Magrin, L., Serva, L., Prevedello, P., Fabbri, G., Martinić, O., Cozzi, G., & Gottardo, F. (2025). Comparison between single and multiple daily distributions of the diet on growth performance, behaviour, and rumen health of fattening Limousin bulls. Animal Feed Science and Technology, 320, 116227. https://doi.org/10.1016/j.anifeedsci.2025.116227.
Makkar, H.P.S. (2018). Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal, 12(8), 1744-1754. https://doi.org/10.1017/S175173111700324X.
Malenica, D., Kass, M., & Bhat, R. (2022). Sustainable management and valorization of agri-food industrial wastes and by-products as animal feed: for ruminants, non-ruminants and as poultry feed. Sustainability, 15(1), 117. https://doi.org/10.3390/su15010117.
Manzoki, M. C., de Mello, A. F. M., Martinez-Burgos, W. J., da Silva Vale, A., Biagini, G., Piazenski, I. N., ... & Soccol, C. R. (2024). Scaling-Up of Cultivated Meat Production Process. In Cultivated Meat: Technologies, Commercialization and Challenges (pp. 241-264). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55968-6_12.
Martínez, Y., & Valdivié, M. (2021). Efficiency of Ross 308 broilers under different nutritional requirements. Journal of Applied Poultry Research, 30(2), 100140. https://doi.org/10.1016/j.japr.2021.100140.
Melzener, L., Verzijden, K. E., Buijs, A. J., Post, M. J., & Flack, J. E. (2021). Cultured beef: from small biopsy to substantial quantity. Journal of the Science of Food and Agriculture, 101(1), 7-14. https://doi.org/10.1002/jsfa.10663.
Mols, J., Peeters-Joris, C., Agathos, S. N., & Schneider, Y. J. (2004). Origin of rice protein hydrolysates added to protein-free media alters secretion and extracellular proteolysis of recombinant interferon-γ as well as CHO-320 cell growth. Biotechnology letters, 26, 1043-1046. https://doi.org/10.1023/B:BILE.0000032960.06112.31.
Moutsatsou, P., Cameron, P., Dages, B., Nienow, A. W., Lye, G., Theodosiou, E., & Hanga, M. P. (2023). Scaling cell production sustainably in cultured meat product development. 10.19103/AS.2023.0130.11.
Mylonas, C. C., De La Gándara, F., Corriero, A., & Ríos, A. B. (2010). Atlantic bluefin tuna (Thunnus thynnus) farming and fattening in the Mediterranean Sea. Reviews in Fisheries Science, 18(3), 266-280. https://doi.org/10.1080/10641262.2010.509520.
Moekti, G. R. (2020, April). Industrial livestock production: A review on advantages and disadvantages. In IOP conference series: Earth and Environmental Science (Vol. 492, No. 1, p. 012094). IOP Publishing. DOI 10.1088/1755-1315/492/1/012094.
O'Neill, E. N., Cosenza, Z. A., Baar, K., & Block, D. E. (2021). Considerations for the development of cost‐effective cell culture media for cultivated meat production. Comprehensive Reviews in Food Science and Food Safety, 20(1), 686-709. https://doi.org/10.1111/1541-4337.12678.
Pai, M., Verma, A. K., Krishnani, K. K., Varghese, T., Hittinahalli, C. M., & Verma, M. K. (2024). Stocking density optimization and its impact on growth and physiological responses of Nile tilapia (Oreochromis niloticus) reared in hybrid biofloc-RAS culture system. Aquaculture, 588, 740920. https://doi.org/10.1016/j.aquaculture.2024.740920.
Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision livestock farming technology: applications and challenges of animal welfare and climate change. Agriculture, 14(4), 620. https://doi.org/10.3390/agriculture14040620.
Pauselli, M., Morbidini, L., Pollidori, P., Lasagna, E., Cozza, F., Servili, D., Vincenti, F., & Giordano, F. (2005). Effetto della differente fonte proteica e della linea genetica sulle performance “in vivo” di vitelloni di razza chianina. 4th World Italian Beef Cattle Congress, Italy, April 29tu-Mayst, 2005, 489-494.
Pierozan, C. R., Agostini, P. D. S., Gasa, J., Novais, A. K., Dias, C. P., Santos, R. S., ... & Silva, C. A. (2016). Factors affecting the daily feed intake and feed conversion ratio of pigs in grow-finishing units: the case of a company. Porcine health management, 2, 1-8. https://doi.org/10.1186/s40813-016-0023-4.
Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., ... & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. https://doi.org/10.1038/s43016-020-0112-z.
Preziuso, G., & Russo, C. (2004). Meat quality traits of longissimus thoracis, semitendinosus and triceps brachii muscles from Chianina beef cattle slaughtered at two different ages. Italian Journal of Animal Science, 3(3), 267-273. https://doi.org/10.4081/ijas.2004.267.
Rabobank Food and Agribusiness Research. (2015). Pigs Might Fly: Peak Pork Production Potential. https://research.rabobank.com/far/en/sectors/farminputs/Pigs_Might_Fly.html).
Rajaei-Sharifabadi, H., Seradj, A. R., Mora, J., Costa-Roure, S., Balcells, J., De la Fuente, G., & Villalba, D. (2024). Effects of energy level and presentation form of concentrate in intensive dairy calves fattening system: Impact on growth performance and feeding behavior of Holstein and Montbeliarde breeds. Animal Feed Science and Technology, 318, 116145. https://doi.org/10.1016/j.anifeedsci.2024.116145.
Ramirez, B. C., Hayes, M. D., Condotta, I. C., & Leonard, S. M. (2022). Impact of housing environment and management on pre-/post-weaning piglet productivity. Journal of animal science, 100(6), skac142. https://doi.org/10.1093/jas/skac142.
Ranucci, D., Branciari, R., Mammoli, R., & Severini, M. (2002). Organic farming of Chianina cattle: animal welfare and meat quality traits. In Proceedings 48th International Congress Meat Science and Technology (pp. 728-729).
Rischer, H., Szilvay, G. R., & Oksman-Caldentey, K. M. (2020). Cellular agriculture—industrial biotechnology for food and materials. Current opinion in biotechnology, 61, 128-134. https://doi.org/10.1016/j.copbio.2019.12.003.
Ritchie, H. (2020) - “The carbon footprint of foods: are differences explained by the impacts of methane?” Published online at OurWorldinData.org. Retrieved from: 'https://ourworldindata.org/carbon-footprint-food-methane'.
Roser, M., & Ritchie, H. (2023). “How has world population growth changed over time?” Published online at OurWorldinData.org. Retrieved from: 'https://ourworldindata.org/population-growth-over-time' [Online Resource].
Rubio, N.R., Fish, K.D., Trimmer, B.A., & Kaplan, D.L. (2019). In vitro insect muscle for tissue engineering applications. ACS Biomaterials Science & Engineering, 5(2), 1071-1082.
Salazar, A., Keusgen, M., & Von Hagen, J. (2016). Amino acids in the cultivation of mammalian cells. Amino acids, 48, 1161-1171. https://doi.org/10.1007/s00726-016-2181-8.
Sarabia, V., Lam, L., Burdett, E., Leiter, L. A., & Klip, A. (1992). Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. The Journal of clinical investigation, 90(4), 1386-1395.
Schnellbaecher, A., Binder, D., Bellmaine, S., & Zimmer, A. (2019). Vitamins in cell culture media: Stability and stabilization strategies. Biotechnology and Bioengineering, 116(6), 1537-1555. https://doi.org/10.1002/bit.26942.
Shepon, A., Eshel, G., Noor, E., & Milo, R. (2016). Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environmental Research Letters, 11(10), 105002. DOI.10.1088/1748-9326/11/10/105002.
Stass, V. L. (2019). Genetic potential for growth, feed conversion and longevity. International Journal of Biology, 11(1), 66-75. doi:10.5539/ijb.v11n1p66.
Statista. (2025). Cattle population worldwide 2012-2023 (in million head). https://www.statista.com.
Statista. (2025a). Number of pigs by country 2025. https://www.statista.com.
Straus, D. S. (1981). Effects of insulin on cellular growth and proliferation. Life sciences, 29(21), 2131-2139. https://doi.org/10.1016/0024-3205(81)90482-3.
Sundaram, T. S., Giromini, C., Rebucci, R., Lanzoni, D., Petrosillo, E., Baldi, A., & Cheli, F. (2025). Milk whey as a sustainable alternative growth supplement to fetal bovine serum in muscle cell culture. Journal of Dairy Science. https://doi.org/10.3168/jds.2024-25449.
Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. https://doi.org/10.1016/j.aquaculture.2008.08.015.
Tarantola, M., Biasato, I., Biasibetti, E., Biagini, D., Capra, P., Guarda, F., ... & Capucchio, M. T. (2020). Beef cattle welfare assessment: use of resource and animal-based indicators, blood parameters and hair 20β-dihydrocortisol. Italian Journal of Animal Science, 19(1), 341-350. https://doi.org/10.1080/1828051X.2020.1743783.
Terrey, D. E., Braidi, D. A., & Serwata, R. (2024). Effect of a microbial phytase on the growth performance, digestibility and retention in a high plant meal inclusion diet for Atlantic salmon (Salmo salar). Aquaculture International, 32(3), 2757-2772. https://doi.org/10.1007/s10499-023-01295-1.
Ünal, N., Polat, M., & Yakan, A. (2025). Investigation of Fattening Performance, Slaughter, Carcass, and Some Meat Quality Characteristics of Imported Simmental, Charolaise, and Belgian Blue× Holstein F1 Bulls. Veterinary Medicine and Science, 11(3), e70219. doi: 10.1002/vms3.70219.
van der Linden, J. M., van der Heide, M. E., Barszcz, M., Konopka, A., Tuśnio, A., Święch, E., ... & Madsen, J. G. (2025). Grower-finisher gilts with high and low feed conversion fed diets with varied crude protein content differ in pancreatic enzyme activity and gut morphology. Livestock Science, 291, 105626. https://doi.org/10.1016/j.livsci.2024.105626.
Vestergaard, M., Oksbjerg, N., & Henckel, P. (2000). Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Science, 54(2), 177-185. https://doi.org/10.1016/S0309-1740(99)00097-2Get rights and content.
Vavrišínová, K., Hozáková, K., Bučko, O., Haščík, P., & Juhás, P. (2019). The effect of the slaughter weight on carcass composition, body measurements and veal quality of Holstein calves. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(5). DOI: 10.11118/actaun201967051235.
Vispute, M. M., Sharma, D., Mandal, A. B., Rokade, J. J., Tyagi, P. K., & Yadav, A. S. (2019). Effect of dietary supplementation of hemp (Cannabis sativa) and dill seed (Anethum graveolens) on performance, serum biochemicals and gut health of broiler chickens. Journal of animal physiology and animal nutrition, 103(2), 525-533. https://doi.org/10.1111/jpn.13052.
Wang, M., & Lu, M. (2016). Tilapia polyculture: a global review. Aquaculture research, 47(8), 2363-2374. https://doi.org/10.1111/are.12708.
Wilkinson, J.M. (2011). Re-defining efficiency of feed use by livestock. Animal, 5(7), 1014-1022. https://doi.org/10.1017/S175173111100005X.
World Population Review. (2025). Sheep population by country 2025. https://www.worldpopulationreview.com.
Yaffe, D., & Saxel, O. R. A. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270(5639), 725-727. https://doi.org/10.1038/270725a0.
Yitbarek, M.B. (2019). Livestock and livestock product trends by 2050. International Journal of Animal Research, 4, 30.
Yue, T., Yin, J., Li, F., Li, D., & Du, M. (2010). High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR. BMB reports, 43(2), 140-145.
Yun, S. H., Lee, J., Mariano Jr, E., Choi, Y., Han, D., Park, J., ... & Hur, S. J. (2024). The roles of media ingredients in muscle cell culture for cultured meat production—A mini-review. Future Foods, 100403. https://doi.org/10.1016/j.fufo.2024.100403.
Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., & Robinson, F. E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry science, 93(12), 2970-2982. https://doi.org/10.3382/ps.2014-04291. University Staff: Request a correction | Centaur Editors: Update this record |