1. Green PS. A revision of Olea L. (Oleaceae). Kew Bull 2002; 57: 91–140.
2. Green PS, Wickens GE. The Olea europaea complex. In: Tan K (editor), The Davis and Hedge Festschrift. Edinburgh, Edinburgh University Press; 1989. pp. 287–299.
3. Vargas P, Muñoz G, Hess J, Kadereit J. Olea europaea subsp. guanchica and subsp. maroccana (Oleaceae), two new names for olive tree relatives. Anales Jardín Bot Madrid. 2000; 58(2): 360-361.
4. Hannachi H, Sommerlatte H, Breton C, Msallem M, El Gazzah M, Ben El Hadj S, Bervillé A. Oleaster (var sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet Resour Crop Evol. 2009; 56(3): 393–403. https://doi.org/10.1007/s10722-008-9374-2
5. Patzelt A. Photographic Field Guide to the Plants of the Western Hajar Mountains, Sultanate of Oman, with a Complete Checklist of Vascular Plant Species. Muscat, Oman: Sultan Qaboos University; 2015.
6. Al Jabri TAH, Culham A, Ellis RH. Wild olive in Oman and its conservation: A review. J Agric Mar Sci. 2024; 29: 1–14. https://doi.org/10.53541/jams.vol29iss1pp1-14
7. Ghazanfar, S. A flora of the Sultanate of Oman. Vol. 3: Loganiaceae–Asteraceae. Scripta Botanica Belgica. Meise: National Botanic Garden of Belgium; 2015.
8. Allen DJ, Westrip JRS, Puttick A, Harding KA, Hilton-Taylor C, Ali H (2021) UAE National Red List of Vascular Plants. Technical Report. Ministry of Climate Change and Environment, United Arab Emirates, Dubai. 2021 (Cited 27 May 2022]. Available from: https://www.moccae.gov.ae/en/home.aspx
9. Olson DM, Dinerstein E. The Global 200: Priority ecoregions for global conservation. Ann Mo Bot Gard. 2002; 89(2): 199-224. https://doi.org/10.2307/3298564
10. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE. Global desertification: building a science for dryland development. Sci. 2007; 316(5826): 847–851. https://doi.org/10.1126/science.1131634
11. Middleton N, Thomas D. World atlas of desertification, 2nd ed. London, Arnold; 1997.
12. Zhang L, Liu J, Wang D, Wang H, Wu Y, Lü Z. Fencing for conservation? - The impacts of fencing on grasslands and the endangered Przewalski’s gazelle on the Tibetan Plateau. Sci China Life Sci. 2016; 61(12): 145–147. https://doi.org/10.1007/s11427-016-5096-4
13. Hanke W, Böhner J, Dreber N, Jürgens N, Schmiedel U, Wesuls D, Dengler J. The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa. Ecol Appl. 2014; 24(5): 1188–1203. https://doi.org/10.1890/13-0377.1
14. Fischer FM, Bonnet OJF, Cezimbra IM, Pillar VD. Long-term effects of grazing intensity on strategies and spatial components of functional diversity in subtropical grassland. Appl Veg Sci. 2019; 22(1): 39–47. https://doi.org/10.1111/avsc.12402
15. Al-Charaabi Y, Al-Yahyai S. Projection of future changes in rainfall and temperature patterns in Oman. J Earth Sci Clim Change. 2013; 4(5), 154-161. https://doi.org/10.4172/2157-7617.1000154
16. Patzelt A. Synopsis of the flora and vegetation of Oman, with special emphasis on patterns of plant endemism. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft. 2015b; 282: 317. https://doi.org/10.24355/dbbs.084-201505271612-0
17. Habib NA, Müller M, Gailing O, Patzelt A, Al Issai G, Krutovsky KV, Wiehle M. Genetic diversity and differentiation of Olea europaea subsp. cuspidata in the Hajar Mountains of Oman. Genet Resour Crop Evol. 2021; 68(3): 865–883. https://doi.org/10.1007/s10722-020-01030-2
18. Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL, Burgess ND, Butchart SHM, Leadley PW, Regan EC, Alkemade R. A mid-term analysis of progress toward international biodiversity targets. Sci. 2014; 346(6206): 241–244. https://doi.org/10.1126/science.1257484
19. Al-Kindi KM, Al Nadhairi R, Al Akhzami S. Dynamic change in Normalised Vegetation Index (NDVI) from 2015 to 2021 in Dhofar, Southern Oman in response to climate change. Agriculture. 2023; 13(3): 592. https://doi.org/10.3390/agriculture13030592
20. Al-Mulla Y, Al-Ruheili A, Al-Lawati A, Parimi K, Ali A, Al-Sadi N, Al-Harrasi F. Assessment of urban expansion’s impact on changes in vegetation patterns in Dhofar, Oman, using remote sensing and GIS techniques. IEEE Access. 2022; 10: 86782–86792. https://doi.org/10.1109/ACCESS.2022.3198942
21. Horisk KE, Ivory SJ, McCorriston J, Fleitmann D, Burns SJ. Vegetation dynamics in Dhofar, Oman, from the Late Holocene to present inferred from rock hyrax middens. Quaternary Research. 2023;116:12–29. https://doi.org/10.1017/qua.2023.42
22. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B. Global effects of land use on local terrestrial biodiversity. Nat. 2015; 520(7545): 45–50. https://doi.org/10.1038/nature14324
23. Di Marco M, Santini L. Human pressures predict species’ geographic range size better than biological traits. Glob Chang Biol. 2015; 21(6): 2169–2178. https://doi.org/10.1111/gcb.12834
24. Antonelli A, Smith RJ, Fry C, Simmonds MSJ, Kersey PJ, Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM. State of the World’s plants and fungi. Royal Botanic Gardens, Kew. 2020. Available from https://doi.org/10.34885/172.
25. Ghazanfar SA. Status of the flora and plant conservation in the Sultanate of Oman. Biol Conserv. 1998; 85(3): 287–295. https://doi.org/10.1016/S0006-3207(97)00162-6
26. Mansour S, Al-Belushi M, Al-Awadhi T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy. 2020; 91: 104414. https://doi.org/10.1016/j.landusepol.2019.104414
27. MAF (Ministry of Agriculture and Fisheries, Oman). Land Use Regulation (in Arabic). 2019 [cited 18 June 2022]. Available from http://decisions.qanoon.om/p/2017/moaf20170010/
28. Anon. Range and Livestock Survey. GRM International Pty. Ltd. For Oman, Ministry of Agriculture and Fisheries; 1982.
29. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012; 15(4): 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
30. Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 2016; 172(2): 635–649. https://doi.org/10.1104/pp.16.00793
31. Anderson JT. Plant fitness in a rapidly changing world. New Phytol. 2016; 210(1): 81–87. https://doi.org/10.1111/nph.13693
32. Kaniewski D, Marriner N, Morhange C, Khater C, Terral JF, Besnard G, Otto T, Luce F, Couillebault Q, Tsitsou L, Pourkerman M, Cheddadi R. Climate change threatens olive oil production in the Levant. Nat Plants. 2023; 9, 219-227. https://doi.org/10.1038/s41477-022-01339-z
33. Al-Sarmi S, Al-Yahyai S, Al-Maskari J, Charabi Y, Choudri BS. Recent observed climate change over Oman. In: Abdalla O, Kacimov A, Chen M, Al-Maktoumi A, Al-Hosni T, Clark I, editors. Water resources in arid areas: the way forward. Zug: Springer; 2017. pp. 89–100.
34. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. [cited 20 March 2022]. Available from https://www.r-project.org/
35. Miller AG, Nyberg JA. Patterns of endemism in Arabia. Flora et Vegetatio Mundi. 1991; 9: 263-279. https://hdl.handle.net/20.500.12594/6340
36. Ghazanfar SA. Flora of the Sultanate of Oman. Vol. 1: Piperaceae–Primulaceae. Scripta Botanica Belgica Series 25., Meise. National Botanic Garden of Belgium; 2003.
37. Aynekulu E, Denich M, Tsegaye D. Regeneration response of Juniperus procera and Olea europaea subsp. cuspidata to exclosure in a dry afromontane forest in Northern Ethiopia. Mt Res Dev. 2009; 29(2): 143–152.
38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005; 25(15): 1965–1978. https://doi.org/10.1002/joc.1276
39. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET, Gonzalez P. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010; 259(4): 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
40. Ball L, MacMillan D, Tzanopoulos J, Spalton A, Al Hikmani H, Moritz M. Contemporary pastoralism in the Dhofar Mountains of Oman. Hum Ecol. 2020; 48(3): 267–277. https://doi.org/10.1007/s10745-020-00153-5
41. Spalton A. Agriculture [Jabal Al Qara]. In: Al Zubair M, Mershen B, Al Saqri S, Al Ghafri A, Al Hosni T, Al Nabhani Y, Al Rajhi A, Nasir S, Patzelt A, Spalton A, Anderson A, editors. The Mountains of Oman. Hildesheim: Georg Olms AG; 2020. pp. 1368 -1381.
42. Ghazanfar SA, Miller AG, McLeish I, Cope TA, Cribb P, Al-Rawahi SH. Plant conservation in Oman. Part-I. A study of the endemic, regionally endemic and threatened plants of the Sultanate of Oman. Muscat, Oman: Department of Biology, Sultan Qaboos University; 1995.
43. Ball L, Tzanopoulos J. Livestock browsing affects the species composition and structure of cloud forest in the Dhofar Mountains of Oman. Appl Veg Sci. 2020; 23(3): 363–376. https://doi.org/10.1111/avsc.12493
44. Fisher M, Gardner AS. The status and ecology of a Juniperus excelsa subsp. polycarpos woodland in the northern mountains of Oman. Vegetatio. 1995; 119(1): 33–51. https://doi.org/10.1007/BF00045102
45. Teketay D. Seedling populations and regeneration of woody species in dry Afromontane forests of Ethiopia. For. Ecol. Manag. 1997; 98(2–3): 149–165. https://doi.org/10.1016/S0378-1127(97)00093-7
46. Zahran MA, Willis AJ. The Vegetation of Egypt. 2nd ed. Springer; 2009. https://doi.org/10.1007/978-1-4020-8754-0
47. Ghazanfar SA, Fisher M, editors. Vegetation of the Arabian Peninsula. Berlin: Springer Science & Business Media; 1998.
48. Al Jabri T, Culham A, Ellis R. Scarification and germination of wild olive stones from Jabal Akhdar, Oman. In: Conference proceedings; 2024. CentAUR.
49. Aerts R, Negussie A, Maes W, November E, Hermy M, Muys B. Restoration of dry Afromontane forest using pioneer shrubs as nurse plants for Olea europaea subsp. cuspidata. Restoration Ecology. 2007;15(1):129–138. https://doi.org/10.1111/j.1526-100X.2006.00197.x
50. Baumgärtner J. Reforestation techniques in the Mediterranean: woody plant propagation and establishment. Doctoral dissertation. University of Freiburg; 2012.
51. Fisher M, Membery DA. Climate. In: Fisher M, Membery DA , editors. Geobotany: Vegetation of the Arabian Peninsula. Dordrecht: Kluwer Academic Publishers; 1998. pp. 5–38.
52. Bentsi-Enchill F, Damptey FG, Pappoe ANM, Ekumah B, Akotoye HK. Impact of anthropogenic disturbance on tree species diversity, vegetation structure, and carbon storage potential in an upland evergreen forest of Ghana, West Africa. Trees For People. 2022; 8: 100238. https://doi.org/10.1016/j.tfp.2022.100238
53. Kessler M, Toivonen JM, Sylvester SP, Kluge J, Hertel D. Elevational patterns of Polylepis tree height in the high Andes of Peru: Role of human impact and climatic conditions. Front Plant Sci. 2014; 5: 194. https://doi.org/10.3389/fpls.2014.00194
54. Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M. Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag. 2011; 262(6): 947–961. https://doi.org/10.1016/j.foreco.2011.05.026
55. Sun S, Zhang G, He T, Song S, Chu X. Effects of landscape positions and landscape types on soil properties and chlorophyll content of citrus in a sloping orchard in the Three Gorges reservoir area, China. Sustainability. 2021; 13: 4288. https://doi.org/10.3390/su13084288
56. Anfodillo T, Carrer M, Simini F, Popa I, Banavar JR, Maritan A. An allometry-based approach for understanding forest structure, predicting tree-size distribution, and assessing the degree of disturbance. Proc R Soc B. 2013; 280(1751): 20122375. https://doi.org/10.1098/rspb.2012.2375
57. Lines ER, Zavala MA, Purves DW, Coomes DA. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr. 2012; 21(10): 1017–1028. https://doi.org/10.1111/j.1466-8238.2011.00746.x
58. Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nat. 2004; 428(6985): 851–854. https://doi.org/10.1038/nature02417
59. Oldham AR, Sillett SC, Tomescu AMF, Koch GW. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy. Am J Bot. 2010; 97(7): 1087–1097. https://doi.org/10.3732/ajb.0900214
60. Di Iorio A, Lasserre B, Scippa GS, Chiatante D. Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot. 2005; 95(2): 351–361. https://doi.org/10.1093/aob/mci033