Unsupervised genetic algorithm deployed for intrusion detectionBankovic, Z., Bojanic, S., Nieto, O. and Badii, A. (2008) Unsupervised genetic algorithm deployed for intrusion detection. In: Hybrid artificial intelligence systems. Lecture notes in computer science, 5271. Springer-Verlag, Berlin, 132-139 . ISBN 9783540876557 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/978-3-540-87656-4_17 Abstract/SummaryThis paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |