Accessibility navigation


Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms

Froese, T., Hadjiloucas, S. ORCID: https://orcid.org/0000-0003-2380-6114, Galvao, R. K. H., Becerra, V. M. and Coelho, C. J. (2006) Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms. Pattern Recognition Letters, 27 (5). pp. 393-407. ISSN 0167-8655

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.patrec.2005.09.002

Abstract/Summary

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Department of Bio-Engineering
ID Code:15222
Uncontrolled Keywords:ECG, discrete wavelet transform, neural networks, genetic algorithms, linear discriminant analysis, NEURAL-NETWORKS, ALGORITHM, IMPACT

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation