[1] X. Hong, S. Chen and C.J. Harris, “Fast kernel classifier construction
using orthogonal forward selection to minimise leave-one-out
misclassification rate,” in Proc. 2006 Int. Conf. Intelligent Computing
(Kunming, China), Aug.16-19, 2006, pp.106–114.
[2] X. Hong, S. Chen and C.J. Harris, “A fast linear-in-the-parameters
classifier construction algorithm using orthogonal forward selection
to minimize leave-one-out misclassification rate,” Int. J. Systems Sci.,
vol.39, no.2, pp.119–125, 2008.
[3] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.
[4] C.J.C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol.2, no.2,
pp.121–167, 1998.
[5] M.E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Machine Learning Research, vol.1, pp.211–244, 2001.
[6] B. Sch¨olkopf and A.J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press:
Cambridge, MA, 2002.
[7] S. Chen, X. Hong and C. J. Harris, “Construction of RBF classifiers
with tunable units using orthogonal forward selection based on leaveone-
out misclassification rate,” in Proc. 2006 Int. Joint Conf. Neural
Networks (Vancouver, Canada), July 16-21, 2006, pp.6390–6394.
[8] S. Chen, X. Hong, B.L. Luk and C.J. Harris, “Construction of tunable
radial basis function networks using orthogonal forward selection,”
IEEE Trans. Systems, Man, and Cybernetics, Part B, vol.39, no.2,
pp.457–466, 2009.
[9] S. Chen, X.X. Wang and C.J. Harris, “Experiments with repeating
weighted boosting search for optimization in signal processing applications,”
IEEE Trans. Systems, Man and Cybernetics, Part B, vol.35,
no.4, pp.682–693, 2005.
[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
of 1995 IEEE Int. Conf. Neural Networks (Perth, Australia), Nov.27-
Dec.1, 1995, Vol.4, pp.1942–1948.
[11] J. Kennedy and R.C. Eberhart, Swarm Intelligence. Morgan Kaufmann,
2001.
[12] A. Ratnaweera, S.K. Halgamuge and H.C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evolutionary Computation, vol.8, no.3,
pp.240–255, 2004.
[13] S.M. Guru, S.K. Halgamuge and S. Fernando, “Particle swarm optimisers
for cluster formation in wireless sensor networks,” in Proc.
2005 Int. Conf. Intelligent Sensors, Sensor Networks and Information
Processing (Melbourne, Australia), Dec.5-8, 2005, pp.319–324.
[14] H.-M. Feng, “Self-generation RBFNs using evolutional PSO learning,”
Neurocomputing, vol.70, no.1-3, pp.241–251, 2006.
[15] K.K. Soo, Y.M. Siu, W.S. Chan, L. Yang and R.S. Chen, “Particleswarm-
optimization-based multiuser detector for CDMA communications,”
IEEE Trans. Vehicular Technology, vol.56, no.5, pp.3006–3013,
2007.
[16] W.-F. Leong and G.G. Yen, “PSO-based multiobjective optimization
with dynamic population size and adaptive local archives,” IEEE Trans.
Systems, Man and Cybernetics, Part B, vol.38, no.5, pp.1270–1293,
2008.
[17] W. Yao, S. Chen, S. Tan and L. Hanzo, “Particle swarm optimisation
aided minimum bit error rate multiuse transmission,” in Proc. ICC
2009 (Dresden, Germany), June 14-18, 5 pages, 2009.
[18] M. Stone, “Cross validation choice and assessment of statistical
predictions,” J. Royal Statistics Society Series B, vol.36, pp.117–147,
1974.
[19] R.H. Myers, Classical and Modern Regression with Applications. 2nd
Edition, Boston, MA: PWS-KENT, 1990.
[20] S. Chen and J. Wigger, “Fast orthogonal least squares algorithm
for efficient subset model selection,” IEEE Trans. Signal Processing,
vol.43, no.7, pp.1713–1715, 1995.
[21] http://www.ics.uci.edu/∼mlearn/MLRepository.html
[22] ida.first.fhg.de/projects/bench/benchmarks.htm
[23] G. R¨atsch, T. Onoda, and K.R. M¨uller, “Soft margins for AdaBoost,”
Machine Learning, vol.42, no.3, pp.287–320, 2001.