Accessibility navigation


Differential effects of overexpression of ERalpha and ERbeta in MCF10A immortalised, non-transformed human breast epithelail cells

Pugazhendhi, D. and Darbre, P. D. (2010) Differential effects of overexpression of ERalpha and ERbeta in MCF10A immortalised, non-transformed human breast epithelail cells. Hormone Molecular Biology and Clinical Investigation, 1 (3). pp. 117-126. ISSN 1868-1883

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1515/HMBCI.2010.013

Abstract/Summary

Background: Cellular effects of oestrogen are mediated by two intracellular receptors ERα and ERβ. However, to compare responses mediated through these two receptors, experimental models are needed where ERα and ERβ are individually stably overexpressed in the same cell type. Methods: We compared the effects of stable overexpression of ERα and ERβ in the MCF10A cell line, which is an immortalised but non-transformed breast epithelial cell line without high endogenous ER expression. Results: Clones of MCF10A cells were characterised which stably overexpressed ERα (10A-ERα2, 10A-ERα13) or which stably overexpressed ERβ (10A-ERβ12, 10A-ERβ15). Overexpression of either ERα or ERβ allowed induction of an oestrogen-regulated ERE-LUC reporter gene by oestradiol which was not found in the untransfected cells. Oestradiol also increased proliferation of 10A-ERα13 and 10A-ERβ12 cells, but not untransfected cells, by 1.3-fold over 7 days. The phytoestrogen, genistein, which is reported to bind more strongly to ERβ than to ERα, could induce luciferase gene expression from an ERE-LUC reporter gene at concentrations of 10−6 M and 10−5 M but only in the clones overexpressing ERβ and not in those overexpressing ERα. Clone 10A-ERβ12 also yielded growth stimulation with 10-6 M genistein. Finally, the overexpression of ERα, but not ERβ, gave rise to increased growth in semi-solid methocel suspension culture in the presence of 70 nM oestradiol, suggesting that overexpression of ERα, but not ERβ, produces characteristics of a transformed phenotype. Conclusions: This provides a model system to compare effects of oestradiol with other oestrogenic ligands in cells stably overexpressing individually ERα or ERβ.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:18495
Uncontrolled Keywords:ERα; ERβ; breast; genistein; MCF10A cells; oestrogen; oestrogen receptor overexpression
Publisher:DeGruyter

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation