Nonlinear model structure design and construction using orthogonal least squares and D-optimality designHong, X. ORCID: https://orcid.org/0000-0002-6832-2298 and Harris, C. J. (2002) Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Transactions on Neural Networks, 13 (5). pp. 1245-1250. ISSN 1045-9227 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1109/TNN.2002.1031959 Abstract/SummaryA very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |